Switch to: References

Add citations

You must login to add citations.
  1. Alternating Terminal Electron-Acceptors at the Basis of Symbiogenesis: How Oxygen Ignited Eukaryotic Evolution.Dave Speijer - 2017 - Bioessays 39 (2):1600174.
    What kind of symbiosis between archaeon and bacterium gave rise to their eventual merger at the origin of the eukaryotes? I hypothesize that conditions favouring bacterial uptake were based on exchange of intermediate carbohydrate metabolites required by recurring changes in availability and use of the two different terminal electron chain acceptors, the bacterial one being oxygen. Oxygen won, and definitive loss of the archaeal membrane potential allowed permanent establishment of the bacterial partner as the proto‐mitochondrion, further metabolic integration and highly (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Modern Synthesis is the Light of Microbial Genomics.Austin Booth, Carlos Mariscal & W. Ford Doolittle - 2016 - Annual Reviews of Microbiology 70 (1):279-297.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Molecular Organisms.Maureen A. O’Malley - 2016 - Biology and Philosophy 31 (4):571-589.
    Protistology, and evolutionary protistology in particular, is experiencing a golden research era. It is an extended one that can be dated back to the 1970s, which is when the molecular rebirth of microbial phylogeny began in earnest. John Archibald, a professor of evolutionary microbiology at Dalhousie University, focuses on the beautiful story of endosymbiosis in his book, John Archibald, One Plus One Equals One: Symbiosis and the Origin of Complex Life. However, this historical narrative could be treated as synecdochal of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Generality of Constructive Neutral Evolution.T. D. P. Brunet & W. Ford Doolittle - 2018 - Biology and Philosophy 33 (1-2):2.
    Constructive Neutral Evolution is an evolutionary mechanism that can explain much molecular inter-dependence and organismal complexity without assuming positive selection favoring such dependency or complexity, either directly or as a byproduct of adaptation. It differs from but complements other non-selective explanations for complexity, such as genetic drift and the Zero Force Evolutionary Law, by being ratchet-like in character. With CNE, purifying selection maintains dependencies or complexities that were neutrally evolved. Preliminary treatments use it to explain specific genetic and molecular structures (...)
    Download  
     
    Export citation  
     
    Bookmark