Switch to: References

Add citations

You must login to add citations.
  1. Tabularity and Post-Completeness in Tense Logic.Qian Chen & M. A. Minghui - 2024 - Review of Symbolic Logic 17 (2):475-492.
    A new characterization of tabularity in tense logic is established, namely, a tense logic L is tabular if and only if $\mathsf {tab}_n^T\in L$ for some $n\geq 1$. Two characterization theorems for the Post-completeness in tabular tense logics are given. Furthermore, a characterization of the Post-completeness in the lattice of all tense logics is established. Post numbers of some tense logics are shown.
    Download  
     
    Export citation  
     
    Bookmark  
  • On logics with coimplication.Frank Wolter - 1998 - Journal of Philosophical Logic 27 (4):353-387.
    This paper investigates (modal) extensions of Heyting-Brouwer logic, i.e., the logic which results when the dual of implication (alias coimplication) is added to the language of intuitionistic logic. We first develop matrix as well as Kripke style semantics for those logics. Then, by extending the Gö;del-embedding of intuitionistic logic into S4, it is shown that all (modal) extensions of Heyting-Brouwer logic can be embedded into tense logics (with additional modal operators). An extension of the Blok-Esakia-Theorem is proved for this embedding.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Simulation and transfer results in modal logic – a survey.Marcus Kracht & Frank Wolter - 1997 - Studia Logica 59 (2):149-177.
    This papers gives a survey of recent results about simulations of one class of modal logics by another class and of the transfer of properties of modal logics under extensions of the underlying modal language. We discuss: the transfer from normal polymodal logics to their fusions, the transfer from normal modal logics to their extensions by adding the universal modality, and the transfer from normal monomodal logics to minimal tense extensions. Likewise, we discuss simulations of normal polymodal logics by normal (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Editors' Introduction.Patrick Blackburn & Maarten de Rijke - 1996 - Notre Dame Journal of Formal Logic 37 (2):161-166.
    The idea of combining logics, structures, and theories has recently been attracting interest in areas as diverse as constraint logic programming, theorem proving, verification, computational linguistics, artificial intelligence and indeed, various branches of logic itself. It would be an exaggeration to claim that these (scattered, and by-and-large independent) investigations have crystallized into an enterprise meriting the title "combined methods"; nonetheless, a number of interesting themes are emerging. This introduction notes some prominent ones and relates them to the papers in this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Filtration Safe Operations on Frames.Stanislav Kikot, Ilya Shapriovsky & Evgeny Zolin - 2014 - In Rajeev Goré, Barteld Kooi & Agi Kurucz (eds.), Advances in Modal Logic, Volume 10: Papers From the Tenth Aiml Conference, Held in Groningen, the Netherlands, August 2014. London, England: CSLI Publications. pp. 333-352.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Logics That Need Very Large Frames.Marcus Kracht - 1999 - Notre Dame Journal of Formal Logic 40 (2):141-173.
    The Kuznetsov-Index of a modal logic is the least cardinal such that any consistent formula has a Kripke-model of size if it has a Kripke-model at all. The Kuznetsov-Spectrum is the set of all Kuznetsov-Indices of modal logics with countably many operators. It has been shown by Thomason that there are tense logics with Kuznetsov-Index . Futhermore, Chagrov has constructed an extension of K4 with Kuznetsov-Index . We will show here that for each countable ordinal there are logics with Kuznetsov-Index (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Editors' Introduction.Patrick Blackburn & Maarten de Rijke - 1996 - Notre Dame Journal of Formal Logic 37 (2):161-166.
    Download  
     
    Export citation  
     
    Bookmark  
  • The structure of lattices of subframe logics.Frank Wolter - 1997 - Annals of Pure and Applied Logic 86 (1):47-100.
    This paper investigates the structure of lattices of normal mono- and polymodal subframelogics, i.e., those modal logics whose frames are closed under a certain type of substructures. Nearly all basic modal logics belong to this class. The main lattice theoretic tool applied is the notion of a splitting of a complete lattice which turns out to be connected with the “geometry” and “topology” of frames, with Kripke completeness and with axiomatization problems. We investigate in detail subframe logics containing K4, those (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A Counterexample in Tense Logic.Frank Wolter - 1996 - Notre Dame Journal of Formal Logic 37 (2):167-173.
    We construct a normal extension of K4 with the finite model property whose minimal tense extension is not complete with respect to Kripke semantics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Finite Model Property for Admissible Rules.Vladimir V. Rybakov, Vladimir R. Kiyatkin & Tahsin Oner - 1999 - Mathematical Logic Quarterly 45 (4):505-520.
    Our investigation is concerned with the finite model property with respect to admissible rules. We establish general sufficient conditions for absence of fmp w. r. t. admissibility which are applicable to modal logics containing K4: Theorem 3.1 says that no logic λ containing K4 with the co-cover property and of width > 2 has fmp w. r. t. admissibility. Surprisingly many, if not to say all, important modal logics of width > 2 are within the scope of this theorem–K4 itself, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Lattices of Finitely Alternative Normal Tense Logics.Minghui Ma & Qian Chen - 2021 - Studia Logica 109 (5):1093-1118.
    A finitely alternative normal tense logic \ is a normal tense logic characterized by frames in which every point has at most n future alternatives and m past alternatives. The structure of the lattice \\) is described. There are \ logics in \\) without the finite model property, and only one pretabular logic in \\). There are \ logics in \\) which are not finitely axiomatizable. For \, there are \ logics in \\) without the FMP, and infinitely many pretabular (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Finite Model Property in Weakly Transitive Tense Logics.Minghui Ma & Qian Chen - 2023 - Studia Logica 111 (2):217-250.
    The finite model property (FMP) in weakly transitive tense logics is explored. Let \(\mathbb {S}=[\textsf{wK}_t\textsf{4}, \textsf{K}_t\textsf{4}]\) be the interval of tense logics between \(\textsf{wK}_t\textsf{4}\) and \(\textsf{K}_t\textsf{4}\). We introduce the modal formula \(\textrm{t}_0^n\) for each \(n\ge 1\). Within the class of all weakly transitive frames, \(\textrm{t}_0^n\) defines the class of all frames in which every cluster has at most _n_ irreflexive points. For each \(n\ge 1\), we define the interval \(\mathbb {S}_n=[\textsf{wK}_t\textsf{4T}_0^{n+1}, \textsf{wK}_t\textsf{4T}_0^{n}]\) which is a subset of \(\mathbb {S}\). There are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Algebraic Approach to Subframe Logics. Modal Case.Guram Bezhanishvili, Silvio Ghilardi & Mamuka Jibladze - 2011 - Notre Dame Journal of Formal Logic 52 (2):187-202.
    We prove that if a modal formula is refuted on a wK4-algebra ( B ,□), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of ( B ,□). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property. On the one hand, this provides a purely algebraic proof of the results of Fine and Zakharyaschev for K4 . On the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations