Switch to: References

Add citations

You must login to add citations.
  1. Generic large cardinals and systems of filters.Giorgio Audrito & Silvia Steila - 2017 - Journal of Symbolic Logic 82 (3):860-892.
    We introduce the notion of ${\cal C}$-system of filters, generalizing the standard definitions of both extenders and towers of normal ideals. This provides a framework to develop the theory of extenders and towers in a more general and concise way. In this framework we investigate the topic of definability of generic large cardinals properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Absoluteness via resurrection.Giorgio Audrito & Matteo Viale - 2017 - Journal of Mathematical Logic 17 (2):1750005.
    The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms for a class of forcings Γ and a given ordinal α), and show that RAω implies generic absoluteness for the first-order theory of Hγ+ with respect to forcings in Γ preserving the axiom, where γ = γΓ is a cardinal which depends on Γ. We also prove that the consistency strength of these axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The iterability hierarchy above I3. [REVIEW]Alessandro Andretta & Vincenzo Dimonte - 2019 - Archive for Mathematical Logic 58 (1-2):77-97.
    In this paper we introduce a new hierarchy of large cardinals between I3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{\mathsf {I3}}}}$$\end{document} and I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{\mathsf {I2}}}}$$\end{document}, the iterability hierarchy, and we prove that every step of it strongly implies the ones below.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The iterability hierarchy above $${{\mathrm{\mathsf {I3}}}}$$ I 3.Alessandro Andretta & Vincenzo Dimonte - 2019 - Archive for Mathematical Logic 58 (1-2):77-97.
    In this paper we introduce a new hierarchy of large cardinals between \ and \, the iterability hierarchy, and we prove that every step of it strongly implies the ones below.
    Download  
     
    Export citation  
     
    Bookmark  
  • Two Upper Bounds on Consistency Strength of $negsquare{aleph{omega}}$ and Stationary Set Reflection at Two Successive $aleph_{n}$.Martin Zeman - 2017 - Notre Dame Journal of Formal Logic 58 (3):409-432.
    We give modest upper bounds for consistency strengths for two well-studied combinatorial principles. These bounds range at the level of subcompact cardinals, which is significantly below a κ+-supercompact cardinal. All previously known upper bounds on these principles ranged at the level of some degree of supercompactness. We show that by using any of the standard modified Prikry forcings it is possible to turn a measurable subcompact cardinal into ℵω and make the principle □ℵω,<ω fail in the generic extension. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Weak Ultrafilter Axiom.W. Hugh Woodin - 2016 - Archive for Mathematical Logic 55 (1-2):319-351.
    The main theorem is that the Ultrafilter Axiom of Woodin :115–37, 2011) must fail at all cardinals where the Axiom I0 holds, in all non-strategic extender models subject only to fairly general requirements on the non-strategic extender model.
    Download  
     
    Export citation  
     
    Bookmark  
  • $$I_0$$ and combinatorics at $$\lambda ^+$$.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1):131-154.
    We investigate the compatibility of $$I_0$$ with various combinatorial principles at $$\lambda ^+$$, which include the existence of $$\lambda ^+$$ -Aronszajn trees, square principles at $$\lambda $$, the existence of good scales at $$\lambda $$, stationary reflections for subsets of $$\lambda ^{+}$$, diamond principles at $$\lambda $$ and the singular cardinal hypothesis at $$\lambda $$. We also discuss whether these principles can hold in $$L(V_{\lambda +1})$$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiom I 0 and higher degree theory.Xianghui Shi - 2015 - Journal of Symbolic Logic 80 (3):970-1021.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Equiconsistencies at subcompact cardinals.Itay Neeman & John Steel - 2016 - Archive for Mathematical Logic 55 (1-2):207-238.
    We present equiconsistency results at the level of subcompact cardinals. Assuming SBHδ, a special case of the Strategic Branches Hypothesis, we prove that if δ is a Woodin cardinal and both □ and □δ fail, then δ is subcompact in a class inner model. If in addition □ fails, we prove that δ is Π12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_1^2}$$\end{document} subcompact in a class inner model. These results are optimal, and lead to equiconsistencies. As a corollary (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • Large cardinals at the brink.W. Hugh Woodin - 2024 - Annals of Pure and Applied Logic 175 (1):103328.
    Download  
     
    Export citation  
     
    Bookmark  
  • Measurable cardinals and choiceless axioms.Gabriel Goldberg - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • The first omitting cardinal for Magidority.Shimon Garti & Yair Hayut - 2019 - Mathematical Logic Quarterly 65 (1):95-104.
    An infinite cardinal λ is Magidor if and only if. It is known that if λ is Magidor then for some, and the first such α is denoted by. In this paper we try to understand some of the properties of. We prove that can be the successor of a supercompact cardinal, when λ is a Magidor cardinal. From this result we obtain the consistency of being a successor of a singular cardinal with uncountable cofinality.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rank-into-rank hypotheses and the failure of GCH.Vincenzo Dimonte & Sy-David Friedman - 2014 - Archive for Mathematical Logic 53 (3-4):351-366.
    In this paper we are concerned about the ways GCH can fail in relation to rank-into-rank hypotheses, i.e., very large cardinals usually denoted by I3, I2, I1 and I0. The main results are a satisfactory analysis of the way the power function can vary on regular cardinals in the presence of rank-into-rank hypotheses and the consistency under I0 of the existence of j:Vλ+1≺Vλ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j : V_{\lambda+1} {\prec} V_{\lambda+1}}$$\end{document} with the failure of GCH (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • LD-Algebras Beyond I0.Vincenzo Dimonte - 2019 - Notre Dame Journal of Formal Logic 60 (3):395-405.
    The algebra of embeddings at the I3 level has been deeply analyzed, but nothing is known algebra-wise for embeddings above I3. In this article, we introduce an operation for embeddings at the level of I0 and above, and prove that they generate an LD-algebra that can be quite different from the one implied by I3.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic at.Vincenzo Dimonte - 2018 - Mathematical Logic Quarterly 64 (1-2):118-132.
    In this paper we introduce a generic large cardinal akin to, together with the consequences of being such a generic large cardinal. In this case is Jónsson, and in a choiceless inner model many properties hold that are in contrast with pcf theory in.
    Download  
     
    Export citation  
     
    Bookmark  
  • Berkeley cardinals and the structure of L.Raffaella Cutolo - 2018 - Journal of Symbolic Logic 83 (4):1457-1476.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inverse limit reflection and the structure of L.Scott S. Cramer - 2015 - Journal of Mathematical Logic 15 (1):1550001.
    We extend the results of Laver on using inverse limits to reflect large cardinals of the form, there exists an elementary embedding Lα → Lα. Using these inverse limit reflection embeddings directly and by broadening the collection of U-representable sets, we prove structural results of L under the assumption that there exists an elementary embedding j : L → L. As a consequence we show the impossibility of a generalized inverse limit X-reflection result for X ⊆ Vλ+1, thus focusing the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The HOD Hypothesis and a supercompact cardinal.Yong Cheng - 2017 - Mathematical Logic Quarterly 63 (5):462-472.
    In this paper, we prove that: if κ is supercompact and the math formula Hypothesis holds, then there is a proper class of regular cardinals in math formula which are measurable in math formula. Woodin also proved this result independently [11]. As a corollary, we prove Woodin's Local Universality Theorem. This work shows that under the assumption of the math formula Hypothesis and supercompact cardinals, large cardinals in math formula are reflected to be large cardinals in math formula in a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation