Switch to: References

Citations of:

The Transfinite Universe

In Matthias Baaz (ed.), Kurt Gödel and the foundations of mathematics: horizons of truth. New York: Cambridge University Press. pp. 449 (2011)

Add citations

You must login to add citations.
  1. How Woodin changed his mind: new thoughts on the Continuum Hypothesis.Colin J. Rittberg - 2015 - Archive for History of Exact Sciences 69 (2):125-151.
    The Continuum Problem has inspired set theorists and philosophers since the days of Cantorian set theory. In the last 15 years, W. Hugh Woodin, a leading set theorist, has not only taken it upon himself to engage in this question, he has also changed his mind about the answer. This paper illustrates Woodin’s solutions to the problem, starting in Sect. 3 with his 1999–2004 argument that Cantor’s hypothesis about the continuum was incorrect. From 2010 onwards, Woodin presents a very different (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Are Large Cardinal Axioms Restrictive?Neil Barton - 2023 - Philosophia Mathematica 31 (3):372-407.
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper I question this claim. I show that there is a kind of maximality (namely absoluteness) on which large cardinal axioms come out as restrictive relative to a formal notion of restrictiveness. Within this framework, I argue that large cardinal axioms can still play many of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against the countable transitive model approach to forcing.Matteo de Ceglie - 2021 - In Martin Blicha & Igor Sedlár (eds.), The Logica Yearbook 2020. College Publications.
    In this paper, I argue that one of the arguments usually put forward in defence of universism is in tension with current set theoretic practice. According to universism, there is only one set theoretic universe, V, and when applying the method of forcing we are not producing new universes, but only simulating them inside V. Since the usual interpretation of set generic forcing is used to produce a “simulation” of an extension of V from a countable set inside V itself, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From metasemantics to analyticity.Zeynep Soysal - 2020 - Philosophy and Phenomenological Research 103 (1):57-76.
    In this paper, I argue from a metasemantic principle to the existence of analytic sentences. According to the metasemantic principle, an external feature is relevant to determining which concept one expresses with an expression only if one is disposed to treat this feature as relevant. This entails that if one isn’t disposed to treat external features as relevant to determining which concept one expresses, and one still expresses a given concept, then something other than external features must determine that one (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The realm of the infinite.H. W. Woodin - 2011 - In Michał Heller & W. H. Woodin (eds.), Infinity: new research frontiers. New York: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Intellectual humility in mathematics.Colin Jakob Rittberg - unknown - Synthese 199 (3-4):5571-5601.
    In this paper I explore how intellectual humility manifests in mathematical practices. To do this I employ accounts of this virtue as developed by virtue epistemologists in three case studies of mathematical activity. As a contribution to a Topical Collection on virtue theory of mathematical practices this paper explores in how far existing virtue-theoretic frameworks can be applied to a philosophical analysis of mathematical practices. I argue that the individual accounts of intellectual humility are successful at tracking some manifestations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations