Switch to: References

Add citations

You must login to add citations.
  1. Book Reviews. [REVIEW][author unknown] - 2000 - International Studies in the Philosophy of Science 14 (2):199-210.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic of Gauge.Alexander Afriat - 2019 - In Carlos Lobo & Julien Bernard (eds.), Weyl and the Problem of Space: From Science to Philosophy. Springer Verlag.
    The logic of gauge theory is considered by tracing its development from general relativity to Yang-Mills theory, through Weyl's two gauge theories. A handful of elements---which for want of better terms can be called \emph{geometrical justice}, \emph{matter wave}, \emph{second clock effect}, \emph{twice too many energy levels}---are enough to produce Weyl's second theory; and from there, all that's needed to reach the Yang-Mills formalism is a \emph{non-Abelian structure group} (say $\mathbb{SU}\textrm{(}N\textrm{)}$).
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of biology: Outline of a transcendental project.Gertrudis Van de Vijver, Linda Van Speybroeck, Dani De Waele, Filip Kolen & Helena De Preester - 2005 - Acta Biotheoretica 53 (2):57-75.
    This paper analyses the actual meaning of a transcendental philosophy of biology, and does so by exploring and actualising the epistemological and metaphysical value of Kant's viewpoint on living systems. It finds inspiration in the Kantian idea of living systems intrinsically resisting objectification, but critically departs from Kant's philosophical solution in as far as it is based in a subjectivist dogmatism. It attempts to overcome this dogmatism, on the one hand by explicitly taking into account the conditions of possibility at (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Holism and structuralism in U(1) gauge theory.Holger Lyre - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):643-670.
    After decades of neglect philosophers of physics have discovered gauge theories--arguably the paradigm of modern field physics--as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism--in the eyes of its proponents the best suited realist position towards modern physics--has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories--in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Curve it, gauge it, or leave it? Practical underdetermination in gravitational theories.Holger Lyre & Tim Oliver Eynck - 2001 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 34 (2):277-303.
    Four empirically equivalent versions of general relativity, namely standard GR, Lorentz-invariant gravitational theory,and the gravitational gauge theories of the Lorentz and translation groups, are investigated in the form of a case study for theory underdetermination. The various ontological indeterminacies (both underdetermination and inscrutability of reference) inherent in gravitational theories are analyzed in a detailed comparative study. The concept of practical underdetermination is proposed, followed by a discussion of its adequacy to describe scientific progress.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • What is structural realism?James Ladyman - 1998 - Studies in History and Philosophy of Science Part A 29 (3):409-424.
    Download  
     
    Export citation  
     
    Bookmark   432 citations  
  • Separability and Non-Individuality: Is It Possible to Conciliate (At Least A Form Of) Einstein’s Realism with Quantum Mechanics?Décio Krause & Jonas R. B. Arenhart - 2005 - Foundations of Physics 44 (12):1269-1288.
    In this paper we argue that physical theories, including quantum mechanics, refer to some kind of ‘objects’, even if only implicitly. We raise questions about the logico-mathematical apparatuses commonly employed in such theories, bringing to light some metaphysical presuppositions underlying such apparatuses. We point out to some incongruities in the discourse holding that quantum objects would be entities of some ‘new kind’ while still adhering to the logico-mathematical framework we use to deal with classical objects. The use of such apparatus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A partial elucidation of the gauge principle.Alexandre Guay - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):346-363.
    The elucidation of the gauge principle ‘‘is the most pressing problem in current philosophy of physics’’ said Michael Redhead in 2003. This paper argues for two points that contribute to this elucidation in the context of Yang–Mills theories. (1) Yang–Mills theories, including quantum electrodynamics, form a class. They should be interpreted together. To focus on electrodynamics is potentially misleading. (2) The essential role of gauge and BRST symmetries is to provide a local field theory that can be quantized and would (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Which Worldlines Represent Possible Particle Histories?Samuel C. Fletcher - 2020 - Foundations of Physics 50 (6):582-599.
    Based on three common interpretive commitments in general relativity, I raise a conceptual problem for the usual identification, in that theory, of timelike curves as those that represent the possible histories of particles in spacetime. This problem affords at least three different solutions, depending on different representational and ontological assumptions one makes about the nature of particles, fields, and their modal structure. While I advocate for a cautious pluralism regarding these options, I also suggest that re-interpreting particles as field processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Moderate structural realism about space-time.Michael Esfeld & Vincent Lam - 2008 - Synthese 160 (1):27 - 46.
    This paper sets out a moderate version of metaphysical structural realism that stands in contrast to both the epistemic structural realism of Worrall and the—radical—ontic structural realism of French and Ladyman. According to moderate structural realism, objects and relations (structure) are on the same ontological footing, with the objects being characterized only by the relations in which they stand. We show how this position fares well as regards philosophical arguments, avoiding the objections against the other two versions of structural realism. (...)
    Download  
     
    Export citation  
     
    Bookmark   161 citations  
  • Holism in cartesianism and in today's philosophy of physics.Michael Esfeld - 1999 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 30 (1):17-36.
    The aim of this paper is to contribute to a more balanced judgement than the widespread impression that the changes which are called for in today's philosophy of physics and which centre around the concept of holism amount to a rupture with the framework of Cartesian philosophy of physics. I argue that this framework includes a sort of holism: As a result of the identification of matter with space, any physical property can be instantiated only if there is the whole (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Foundation of Quantum Mechanics: Once Again.Paul Drechsel - 2019 - Foundations of Science 24 (2):375-389.
    Brukner and Dakić proposed a very simple axiom system as a foundation for quantum theory. It implies the qubit and quantum entanglement. Because this axiom system aims at the core of our understanding of nature, it must be brought to the forum of the philosophy of nature. For philosophical reasons, a completely denied champion of quantum theory, imaginarity i, is added into this axiom system. In relation to Bell’s inequality, this leads to a deeper ‘philosophical’ understanding of quantum nature based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On gauge symmetries, indiscernibilities, and groupoid-theoretical equalities.Gabriel Catren - 2022 - Studies in History and Philosophy of Science Part A 91 (C):244-261.
    Download  
     
    Export citation  
     
    Bookmark  
  • Geometric foundations of classical yang–mills theory.Gabriel Catren - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):511-531.
    We analyze the geometric foundations of classical Yang-Mills theory by studying the relationships between internal relativity, locality, global/local invariance, and background independence. We argue that internal relativity and background independence are the two independent defining principles of Yang-Mills theory. We show that local gauge invariance -heuristically implemented by means of the gauge argument- is a direct consequence of internal relativity. Finally, we analyze the conceptual meaning of BRST symmetry in terms of the invariance of the gauge fixed theory under general (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Are gauge symmetry transformations observable?Katherine Brading & Harvey R. Brown - 2004 - British Journal for the Philosophy of Science 55 (4):645-665.
    In a recent paper in this journal, Kosso ([2000]) discussed the observational status of continuous symmetries of physics. While we are in broad agreement with his approach, we disagree with his analysis. In the discussion of the status of gauge symmetry, a set of examples offered by 't Hooft ([1980]) has influenced several philosophers, including Kosso; in all cases the interpretation of the examples is mistaken. In this paper, we present our preferred approach to the empirical significance of symmetries, re-analysing (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Counting the Particles: Entity and Identity in the Philosophy of Physics.Francesco Berto - 2017 - Metaphysica 18 (1):69-89.
    I would like to attack a certain view: The view that the concept of identity can fail to apply to some things although, for some positive integer n, we have n of them. The idea of entities without self-identity is seriously entertained in the philosophy of quantum mechanics. It is so pervasive that it has been labelled the Received View. I introduce the Received View in Section 1. In Section 2 I explain what I mean by entity, and I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Weyl’s gauge argument.Alexander Afriat - 2013 - Foundations of Physics 43 (5):699-705.
    The standard $\mathbb{U}(1)$ “gauge principle” or “gauge argument” produces an exact potential A=dλ and a vanishing field F=d 2 λ=0. Weyl (in Z. Phys. 56:330–352, 1929; Rice Inst. Pam. 16:280–295, 1929) has his own gauge argument, which is sketchy, archaic and hard to follow; but at least it produces an inexact potential A and a nonvanishing field F=dA≠0. I attempt a reconstruction.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Who am I? What is it? The subject-object relation.Sunny Auyang - manuscript
    Mind is not some mysterious mind stuff; no such stuff exists and the universe comprises only physical matter. It is an emergent property of certain complex material entities, not brains alone but whole human beings living and coping in the physical and social world. This thesis involves three ideas: materialism, emergent properties, and intentionality. The first two belong to the mind-body problem and the status of mental properties in the material universe. The third refers to the mind-world relation, the symbiotic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shortening the gauge argument.Alexander Afriat - unknown
    The ''gauge argument'' is often used to 'deduce' interactions from a symmetry requirement. A transition---whose justification can take some effort---from global to local transformations is typically made at the beginning of the argument. But one can spare the trouble by \emph{starting} with local transformations, as global ones do not exist in general. The resulting economy seems noteworthy.
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural realism and quantum gravity.Tian Yu Cao - 2006 - In Dean Rickles, Steven French & Juha Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum mechanics: symmetry and interpretation.Sebastian Fortin & Olimpia Lombardi - unknown
    In this paper it will be argued that any realist interpretation of quantum mechanics intending to preserve the objectivity of the set of the definite-valued observables should require such a set to be invariant under the symmetry group of the theory. In particular, it will be shown that the natural way to reach this goal is to appeal to the Casimir operators of the Galilean group. Additionally, this idea will be generalized in two ways: by selecting the definite-valued observables of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can classical description of physical reality be considered complete?Gabriel Catren - unknown
    We propose a definition of physical objects that aims to clarify some interpretational issues in quantum mechanics. We claim that the transformations generated by the objective properties of a physical system must be strictly interpreted as gauge transformations. We will argue that the uncertainty principle is a consequence of the mutual intertwining between objective properties and gauge-dependant properties. The proposed definition implies that in classical mechanics gauge-dependant properties are wrongly considered objective. We will conclude that, unlike classical mechanics, quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A versus b! Topological nonseparability and the Aharonov-Bohm effect.Tim Oliver Eynck, Holger Lyre & Nicolai von Rummell - 2001
    Since its discovery in 1959 the Aharonov-Bohm effect has continuously been the cause for controversial discussions of various topics in modern physics, e.g. the reality of gauge potentials, topological effects and nonlocalities. In the present paper we juxtapose the two rival interpretations of the Aharonov-Bohm effect. We show that the conception of nonlocality encountered in the Aharonov-Bohm effect is closely related to the nonseparability which is common in quantum mechanics albeit distinct from it due to its topological nature. We propose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Ontology in the Light of Gauge Theories.Gabriel Catren - unknown
    We propose the conjecture according to which the fact that quantum mechanics does not admit sharp value attributions to both members of a complementary pair of observables can be understood in the light of the symplectic reduction of phase space in constrained Hamiltonian systems. In order to unpack this claim, we propose a quantum ontology based on two independent postulates, namely the phase postulate and the quantum postulate. The phase postulate generalizes the gauge correspondence between first-class constraints and gauge transformations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations