Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Platonism and mathematical intuition in Kurt gödel's thought.Charles Parsons - 1995 - Bulletin of Symbolic Logic 1 (1):44-74.
    The best known and most widely discussed aspect of Kurt Gödel's philosophy of mathematics is undoubtedly his robust realism or platonism about mathematical objects and mathematical knowledge. This has scandalized many philosophers but probably has done so less in recent years than earlier. Bertrand Russell's report in his autobiography of one or more encounters with Gödel is well known:Gödel turned out to be an unadulterated Platonist, and apparently believed that an eternal “not” was laid up in heaven, where virtuous logicians (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • The collapse of the Hilbert program: A variation on the gödelian theme.Saul A. Kripke - 2022 - Bulletin of Symbolic Logic 28 (3):413-426.
    The Hilbert program was actually a specific approach for proving consistency, a kind of constructive model theory. Quantifiers were supposed to be replaced by ε-terms. εxA(x) was supposed to denote a witness to ∃xA(x), or something arbitrary if there is none. The Hilbertians claimed that in any proof in a number-theoretic system S, each ε-term can be replaced by a numeral, making each line provable and true. This implies that S must not only be consistent, but also 1-consistent. Here we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)On the philosophical development of Kurt gödel.Mark van Atten & Juliette Kennedy - 2003 - Bulletin of Symbolic Logic 9 (4):425-476.
    It is by now well known that Gödel first advocated the philosophy of Leibniz and then, since 1959, that of Husserl. This raises three questions:1.How is this turn to Husserl to be interpreted? Is it a dismissal of the Leibnizian philosophy, or a different way to achieve similar goals?2.Why did Gödel turn specifically to the later Husserl's transcendental idealism?3.Is there any detectable influence from Husserl on Gödel's writings?Regarding the first question, Wang [96, p.165] reports that Gödel ‘[saw] in Husserl's work (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On Logic in the Law: "Something, but not All".Susan Haack - 2007 - Ratio Juris 20 (1):1-31.
    In 1880, when Oliver Wendell Holmes (later to be a Justice of the U.S. Supreme Court) criticized the logical theology of law articulated by Christopher Columbus Langdell (the first Dean of Harvard Law School), neither Holmes nor Langdell was aware of the revolution in logic that had begun, the year before, with Frege's Begriffsschrift. But there is an important element of truth in Holmes's insistence that a legal system cannot be adequately understood as a system of axioms and corollaries; and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Unfinished Chomskyan Revolution.Jerrold J. Katz - 1996 - Mind and Language 11 (3):270-294.
    Chomsky's criticism of Bloomfieldian structuralism's conception of linguistic reality applies equally to his own conception of linguistic reality. There are too many sentences in a natural language for them to have either concrete acoustic reality or concrete psychological or neural reality. Sentences have to be types, which, by Peirce's generally accepted definition, means that they are abstract objects. Given that sentences are abstract objects, Chomsky's generativism as well as his psychologism have to be given up. Langendoen and Postal's argument in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strong axioms of infinity in NFU.M. Randall Holmes - 2001 - Journal of Symbolic Logic 66 (1):87-116.
    This paper discusses a sequence of extensions ofNFU, Jensen's improvement of Quine's set theory “New Foundations” (NF) of [16].The original theoryNFof Quine continues to present difficulties. After 60 years of intermittent investigation, it is still not known to be consistent relative to any set theory in which we have confidence. Specker showed in [20] thatNFdisproves Choice (and so proves Infinity). Even if one assumes the consistency ofNF, one is hampered by the lack of powerful methods for proofs of consistency and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Kurt Gödel's Anticipation of the Turing Machine: A Vitalistic Approach.Tim Lethen - 2020 - History and Philosophy of Logic 41 (3):252-264.
    In 1935/1936 Kurt Gödel wrote three notebooks on the foundations of quantum mechanics, which have now been entirely transcribed for the first time. Whereas a lot of the material is rather technical in character, many of Gödel's remarks have a philosophical background and concentrate on Leibnizian monadology as well as on vitalism. Obviously influenced by the vitalistic writings of Hans Driesch and his ‘proofs’ for the existence of an entelechy in every living organism, Gödel briefly develops the idea of a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Plausible Impact of Phenomenology on Gödel's Thoughts.Stathis Livadas - 2019 - Theoria 85 (2):145-170.
    It is well known that in his later years Gödel turned to a systematic reading of phenomenology, whose founder, Edmund Husserl, was highly esteem as a philosopher who sought to elevate philosophy to the standards of a rigorous science. For reasons purportedly related to his earlier attraction to Leibnizian monadology, Gödel was particularly interested in Husserl's transcendental phenomenology and the way it may shape the discussion on the nature of mathematical‐logical objects and the meaning and internal coherence of primitive terms (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is Intuitionistic Arithmetic?V. Alexis Peluce - 2024 - Erkenntnis 89 (8):3351-3376.
    L.E.J. Brouwer famously took the subject’s intuition of time to be foundational and from there ventured to build up mathematics. Despite being largely critical of formal methods, Brouwer valued axiomatic systems for their use in both communication and memory. Through the Dutch Mathematical Society, Gerrit Mannoury posed a challenge in 1927 to provide an axiomatization of intuitionistic arithmetic. Arend Heyting’s 1928 axiomatization was chosen as the winner and has since enjoyed the status of being the _de facto_ formalization of intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Jan von Plato.* Can Mathematics be Proved Consistent?John W. Dawson - 2023 - Philosophia Mathematica 31 (1):104-111.
    The papers of Kurt Gödel were donated to the Institute for Advanced Study by his widow Adele shortly after his death in 1978. They were catalogued by the review.
    Download  
     
    Export citation  
     
    Bookmark  
  • A metaphysical foundation for mathematical philosophy.Wójtowicz Krzysztof & Skowron Bartłomiej - 2022 - Synthese 200 (4):1-28.
    Although mathematical philosophy is flourishing today, it remains subject to criticism, especially from non-analytical philosophers. The main concern is that even if formal tools serve to clarify reasoning, they themselves contribute nothing new or relevant to philosophy. We defend mathematical philosophy against such concerns here by appealing to its metaphysical foundations. Our thesis is that mathematical philosophy can be founded on the phenomenological theory of ideas as developed by Roman Ingarden. From this platonist perspective, the “unreasonable effectiveness of mathematics in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel's ‘Disproof’ of the Syntactical Viewpoint.Victor Rodych - 2001 - Southern Journal of Philosophy 39 (4):527-555.
    Download  
     
    Export citation  
     
    Bookmark