Switch to: References

Add citations

You must login to add citations.
  1. A Bias Network Approach (BNA) to Encourage Ethical Reflection Among AI Developers.Gabriela Arriagada-Bruneau, Claudia López & Alexandra Davidoff - 2024 - Science and Engineering Ethics 31 (1):1-29.
    We introduce the Bias Network Approach (BNA) as a sociotechnical method for AI developers to identify, map, and relate biases across the AI development process. This approach addresses the limitations of what we call the "isolationist approach to AI bias," a trend in AI literature where biases are seen as separate occurrence linked to specific stages in an AI pipeline. Dealing with these multiple biases can trigger a sense of excessive overload in managing each potential bias individually or promote the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Procedural fairness in algorithmic decision-making: the role of public engagement.Marie Christin Decker, Laila Wegner & Carmen Leicht-Scholten - 2025 - Ethics and Information Technology 27 (1):1-16.
    Despite the widespread use of automated decision-making (ADM) systems, they are often developed without involving the public or those directly affected, leading to concerns about systematic biases that may perpetuate structural injustices. Existing formal fairness approaches primarily focus on statistical outcomes across demographic groups or individual fairness, yet these methods reveal ambiguities and limitations in addressing fairness comprehensively. This paper argues for a holistic approach to algorithmic fairness that integrates procedural fairness, considering both decision-making processes and their outcomes. Procedural fairness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mitigating implicit and explicit bias in structured data without sacrificing accuracy in pattern classification.Fabian Hoitsma, Gonzalo Nápoles, Çiçek Güven & Yamisleydi Salgueiro - forthcoming - AI and Society:1-20.
    Using biased data to train Artificial Intelligence (AI) algorithms will lead to biased decisions, discriminating against certain groups or individuals. Bias can be explicit (one or several protected features directly influence the decisions) or implicit (one or several protected features indirectly influence the decisions). Unsurprisingly, biased patterns are difficult to detect and mitigate. This paper investigates the extent to which explicit and implicit against one or more protected features in structured classification data sets can be mitigated simultaneously while retaining the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are AI systems biased against the poor? A machine learning analysis using Word2Vec and GloVe embeddings.Georgina Curto, Mario Fernando Jojoa Acosta, Flavio Comim & Begoña Garcia-Zapirain - forthcoming - AI and Society:1-16.
    Among the myriad of technical approaches and abstract guidelines proposed to the topic of AI bias, there has been an urgent call to translate the principle of fairness into the operational AI reality with the involvement of social sciences specialists to analyse the context of specific types of bias, since there is not a generalizable solution. This article offers an interdisciplinary contribution to the topic of AI and societal bias, in particular against the poor, providing a conceptual framework of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Artificial intelligence and work: a critical review of recent research from the social sciences.Jean-Philippe Deranty & Thomas Corbin - forthcoming - AI and Society:1-17.
    This review seeks to present a comprehensive picture of recent discussions in the social sciences of the anticipated impact of AI on the world of work. Issues covered include: technological unemployment, algorithmic management, platform work and the politics of AI work. The review identifies the major disciplinary and methodological perspectives on AI’s impact on work, and the obstacles they face in making predictions. Two parameters influencing the development and deployment of AI in the economy are highlighted: the capitalist imperative and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • AI ageism: a critical roadmap for studying age discrimination and exclusion in digitalized societies.Justyna Stypinska - 2023 - AI and Society 38 (2):665-677.
    In the last few years, we have witnessed a surge in scholarly interest and scientific evidence of how algorithms can produce discriminatory outcomes, especially with regard to gender and race. However, the analysis of fairness and bias in AI, important for the debate of AI for social good, has paid insufficient attention to the category of age and older people. Ageing populations have been largely neglected during the turn to digitality and AI. In this article, the concept of AI ageism (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Speeding up to keep up: exploring the use of AI in the research process.Jennifer Chubb, Peter Cowling & Darren Reed - 2022 - AI and Society 37 (4):1439-1457.
    There is a long history of the science of intelligent machines and its potential to provide scientific insights have been debated since the dawn of AI. In particular, there is renewed interest in the role of AI in research and research policy as an enabler of new methods, processes, management and evaluation which is still relatively under-explored. This empirical paper explores interviews with leading scholars on the potential impact of AI on research practice and culture through deductive, thematic analysis to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Opening the black boxes of the black carpet in the era of risk society: a sociological analysis of AI, algorithms and big data at work through the case study of the Greek postal services.Christos Kouroutzas & Venetia Palamari - forthcoming - AI and Society:1-14.
    This article draws on contributions from the Sociology of Science and Technology and Science and Technology Studies, the Sociology of Risk and Uncertainty, and the Sociology of Work, focusing on the transformations of employment regarding expanded automation, robotization and informatization. The new work patterns emerging due to the introduction of software and hardware technologies, which are based on artificial intelligence, algorithms, big data gathering and robotic systems are examined closely. This article attempts to “open the black boxes” of the “black (...)
    Download  
     
    Export citation  
     
    Bookmark