Switch to: References

Add citations

You must login to add citations.
  1. More on cichoń's diagram and infinite games.Masaru Kada - 2000 - Journal of Symbolic Logic 65 (4):1713-1724.
    Some cardinal invariants from Cichon's diagram can be characterized using the notion of cut-and-choose games on cardinals. In this paper we give another way to characterize those cardinals in terms of infinite games. We also show that some properties for forcing, such as the Sacks Property, the Laver Property and ω ω -boundingness, are characterized by cut-and-choose games on complete Boolean algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • A game on Boolean algebras describing the collapse of the continuum.Miloš S. Kurilić & Boris Šobot - 2009 - Annals of Pure and Applied Logic 160 (1):117-126.
    The game is played on a complete Boolean algebra in ω-many moves. At the beginning White chooses a non-zero element p of and, in the nth move, White chooses a positive pn

    (...)

    Download  
     
    Export citation  
     
    Bookmark  
  • κ-Stationary Subsets of Pκ+Λ, Infinitary Games, and Distributive Laws in Boolean Algebras.Natasha Dobrinen - 2008 - Journal of Symbolic Logic 73 (1):238 - 260.
    We characterize the (κ, Λ, < μ)-distributive law in Boolean algebras in terms of cut and choose games $\scr{G}_{<\mu}^{\kappa}(\lambda)$ , when μ ≤ κ ≤ Λ and κ<κ = κ. This builds on previous work to yield game-theoretic characterizations of distributive laws for almost all triples of cardinals κ, Λ, μ with μ ≤ Λ, under GCH. In the case when μ ≤ κ ≤ Λ and κ<κ = κ, we show that it is necessary to consider whether the κ-stationarity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Power-collapsing games.Miloš S. Kurilić & Boris Šobot - 2008 - Journal of Symbolic Logic 73 (4):1433-1457.
    The game Gls(κ) is played on a complete Boolean algebra B, by two players. White and Black, in κ-many moves (where κ is an infinite cardinal). At the beginning White chooses a non-zero element p ∈ B. In the α-th move White chooses pα ∈ (0.p)p and Black responds choosing iα ∈ {0.1}. White wins the play iff $\bigwedge _{\beta \in \kappa}\bigvee _{\alpha \geq \beta }p_{\alpha}^{i\alpha}=0$ , where $p_{\alpha}^{0}=p_{\alpha}$ and $p_{\alpha}^{1}=p\ p_{\alpha}$ . The corresponding game theoretic properties of c.B.a.'s are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • More on the pressing down game.Jakob Kellner & Saharon Shelah - 2011 - Archive for Mathematical Logic 50 (3-4):477-501.
    We investigate the pressing down game and its relation to the Banach Mazur game. In particular we show: consistently, there is a nowhere precipitous normal ideal I on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_2}$$\end{document} such that player nonempty wins the pressing down game of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} on I even if player empty starts.
    Download  
     
    Export citation  
     
    Bookmark   1 citation