Switch to: References

Add citations

You must login to add citations.
  1. Full intuitionistic linear logic.Martin Hyland & Valeria de Paiva - 1993 - Annals of Pure and Applied Logic 64 (3):273-291.
    In this paper we give a brief treatment of a theory of proofs for a system of Full Intuitionistic Linear Logic. This system is distinct from Classical Linear Logic, but unlike the standard Intuitionistic Linear Logic of Girard and Lafont includes the multiplicative disjunction par. This connective does have an entirely natural interpretation in a variety of categorical models of Intuitionistic Linear Logic. The main proof-theoretic problem arises from the observation of Schellinx that cut elimination fails outright for an intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Realizability Interpretation for Classical Arithmetic.Jeremy Avigad - 2002 - Bulletin of Symbolic Logic 8 (3):439-440.
    Summary. A constructive realizablity interpretation for classical arithmetic is presented, enabling one to extract witnessing terms from proofs of 1 sentences. The interpretation is shown to coincide with modified realizability, under a novel translation of classical logic to intuitionistic logic, followed by the Friedman-Dragalin translation. On the other hand, a natural set of reductions for classical arithmetic is shown to be compatible with the normalization of the realizing term, implying that certain strategies for eliminating cuts and extracting a witness from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A cut-elimination proof in intuitionistic predicate logic.Mirjana Borisavljević - 1999 - Annals of Pure and Applied Logic 99 (1-3):105-136.
    In this paper we give a new proof of cut elimination in Gentzen's sequent system for intuitionistic first-order predicate logic. The point of this proof is that the elimination procedure eliminates the cut rule itself, rather than the mix rule.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A note on the proof theory the λII-calculus.David J. Pym - 1995 - Studia Logica 54 (2):199 - 230.
    The lambdaPi-calculus, a theory of first-order dependent function types in Curry-Howard-de Bruijn correspondence with a fragment of minimal first-order logic, is defined as a system of (linearized) natural deduction. In this paper, we present a Gentzen-style sequent calculus for the lambdaPi-calculus and prove the cut-elimination theorem. The cut-elimination result builds upon the existence of normal forms for the natural deduction system and can be considered to be analogous to a proof provided by Prawitz for first-order logic. The type-theoretic setting considered (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On sequence-conclusion natural deduction systems.Branislav R. Boričić - 1985 - Journal of Philosophical Logic 14 (4):359 - 377.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Prior’s tonk, notions of logic, and levels of inconsistency: vindicating the pluralistic unity of science in the light of categorical logical positivism.Yoshihiro Maruyama - 2016 - Synthese 193 (11).
    There are still on-going debates on what exactly is wrong with Prior’s pathological “tonk.” In this article I argue, on the basis of categorical inferentialism, that two notions of inconsistency ought to be distinguished in an appropriate account of tonk; logic with tonk is inconsistent as the theory of propositions, and it is due to the fallacy of equivocation; in contrast to this diagnosis of the Prior’s tonk problem, nothing is actually wrong with tonk if logic is viewed as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof Theory and Complexity.Carlo Cellucci - 1985 - Synthese 62 (2):173-189.
    Download  
     
    Export citation  
     
    Bookmark   1 citation