Mathematical Deduction by Induction

Gratia Eruditionis:4-12 (2013)
Download Edit this record How to cite View on PhilPapers
Abstract
In attempt to provide an answer to the question of origin of deductive proofs, I argue that Aristotle’s philosophy of math is more accurate opposed to a Platonic philosophy of math, given the evidence of how mathematics began. Aristotle says that mathematical knowledge is a posteriori, known through induction; but once knowledge has become unqualified it can grow into deduction. Two pieces of recent scholarship on Greek mathematics propose new ways of thinking about how mathematics began in the Greek culture. Both claimed there was a close relationship between the culture and mathematicians; mathematics was understood through imaginative processes, experiencing the proofs in tangible ways, and establishing a consistent unified form of argumentation. These pieces of evidence provide the context in which Aristotle worked and their contributions lend support to the argument that mathematical premises as inductively available is a better way of understanding the origins of deductive practices, opposed to the Platonic tradition.
Categories
PhilPapers/Archive ID
AILMDB-2
Upload history
Archival date: 2014-01-26
View other versions
Added to PP index
2014-01-26

Total views
405 ( #11,526 of 53,031 )

Recent downloads (6 months)
44 ( #14,100 of 53,031 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.