Related

Contents
124 found
Order:
1 — 50 / 124
  1. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These ontological (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Du Châtelet’s Philosophy of Mathematics.Aaron Wells - forthcoming - In Fatema Amijee (ed.), The Bloomsbury Handbook of Du Châtelet. Bloomsbury.
    I begin by outlining Du Châtelet’s ontology of mathematical objects: she is an idealist, and mathematical objects are fictions dependent on acts of abstraction. Next, I consider how this idealism can be reconciled with her endorsement of necessary truths in mathematics, which are grounded in essences that we do not create. Finally, I discuss how mathematics and physics relate within Du Châtelet’s idealism. Because the primary objects of physics are partly grounded in the same kinds of acts as yield mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Was Wittgenstein a radical conventionalist?Ásgeir Berg - 2024 - Synthese 203 (2):1-31.
    This paper defends a reading of Wittgenstein’s philosophy of mathematics in the Lectures on the Foundation of Mathematics as a radical conventionalist one, whereby our agreement about the particular case is constitutive of our mathematical practice and ‘the logical necessity of any statement is a direct expression of a convention’ (Dummett 1959, p. 329). -/- On this view, mathematical truths are conceptual truths and our practices determine directly for each mathematical proposition individually whether it is true or false. Mathematical truths (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, particularly in ”R ́ecoltes (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Why Did Thomas Harriot Invent Binary?Lloyd Strickland - 2024 - Mathematical Intelligencer 46 (1):57-62.
    From the early eighteenth century onward, primacy for the invention of binary numeration and arithmetic was almost universally credited to the German polymath Gottfried Wilhelm Leibniz (1646–1716). Then, in 1922, Frank Vigor Morley (1899–1980) noted that an unpublished manuscript of the English mathematician, astronomer, and alchemist Thomas Harriot (1560–1621) contained the numbers 1 to 8 in binary. Morley’s only comment was that this foray into binary was “certainly prior to the usual dates given for binary numeration”. Almost thirty years later, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Leibniz on Number Systems.Lloyd Strickland - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Springer. pp. 167-197.
    This chapter examines the pioneering work of Gottfried Wilhelm Leibniz (1646-1716) on various number systems, in particular binary, which he independently invented in the mid-to-late 1670s, and hexadecimal, which he invented in 1679. The chapter begins with the oft-debated question of who may have influenced Leibniz’s invention of binary, though as none of the proposed candidates is plausible I suggest a different hypothesis, that Leibniz initially developed binary notation as a tool to assist his investigations in mathematical problems that were (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Listy Gottloba Fregego. Uwagi o polskim wydaniu [rec. Gottlob Frege: Korespondencja naukowa]. [REVIEW]Krystian Bogucki - 2023 - Folia Philosophica 48:1-24. Translated by Andrzej Painta, Marta Ples-Bęben, Mateusz Jurczyński & Lidia Obojska.
    The present article reviews the Polish-language edition of Gottlob Frege’s scientific correspondence. In the article, I discuss the material hitherto unpublished in Polish in relation to the remainder of Frege’s works. First of all, I inquire into the role and nature of definitions. Then, I consider Frege’s recognition criteria for sameness of thoughts. In the article’s third part, I study letters devoted to the principle of semantic compositionality, while in the fourth part I discuss Frege’s remarks concerning the context principle.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Wittgenstein on Mathematical Advances and Semantical Mutation.André Porto - 2023 - Philósophos.
    The objective of this article is to try to elucidate Wittgenstein’s ex-travagant thesis that each and every mathematical advancement involves some “semantical mutation”, i.e., some alteration of the very meanings of the terms involved. To do that we will argue in favor of the idea of a “modal incompati-bility” between the concepts involved, as they were prior to the advancement, and what they become after the new result was obtained. We will also argue that the adoption of this thesis profoundly (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. За игрой в карты с чертиком Визинга.Brian Rabern & Landon Rabern - 2023 - Kvant 2023 (10):2-6.
    We analyze a solitaire game in which a demon rearranges some cards after each move. The graph edge coloring theorems of K˝onig (1931) and Vizing (1964) follow from the winning strategies developed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Why Did Leibniz Invent Binary?Lloyd Strickland - 2023 - In Wenchao Li, Charlotte Wahl, Sven Erdner, Bianca Carina Schwarze & Yue Dan (eds.), »Le present est plein de l’avenir, et chargé du passé«. Gottfried-Wilhelm-Leibniz-Gesellschaft e.V.. pp. 354-360.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du Châtelet in this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Degeneration and Entropy.Eugene Y. S. Chua - 2022 - Kriterion - Journal of Philosophy 36 (2):123-155.
    [Accepted for publication in Lakatos's Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, special issue of Kriterion: Journal of Philosophy. Edited by S. Nagler, H. Pilin, and D. Sarikaya.] Lakatos’s analysis of progress and degeneration in the Methodology of Scientific Research Programmes is well-known. Less known, however, are his thoughts on degeneration in Proofs and Refutations. I propose and motivate two new criteria for degeneration based on the discussion in Proofs and Refutations (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Teológia a matematika v kontexte paradigmatických zmien renesančnej a ranonovovekej kozmológie a fyziky.Gašpar Fronc - 2022 - Bratislava: Univerzita Komenského v Bratislave.
    The publication offers an interdisciplinary and historical approach to the questions of exploration of the world with an emphasis on paradigm changes during the Renaissance and early modern times, leading to new concepts that we can accept as the beginning of the natural sciences in our current understanding. The main goal is to point out the connections between the paradigms of mathematics, theology and natural sciences, the connection of which is for the main protagonists an essential factor in the formation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Mathematics embodied: Merleau-Ponty on geometry and algebra as fields of motor enaction.Jan Halák - 2022 - Synthese 200 (1):1-28.
    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for Merleau-Ponty, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science_ - Introduction to the Special Issue on _Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave rise to this special issue. Lastly, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. The Paradigm Shift in the 19th-century Polish Philosophy of Mathematics.Paweł Polak - 2022 - Studia Historiae Scientiarum 21:217-235.
    The Polish philosophy of mathematics in the 19th century had its origins in the Romantic period under the influence of the then-predominant idealist philosophies. The decline of Romantic philosophy precipitated changes in general philosophy, but what is less well known is how it triggered changes in the philosophy of mathematics. In this paper, we discuss how the Polish philosophy of mathematics evolved from the metaphysical approach that had been formed during the Romantic era to the more modern positivistic paradigm. These (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. Resolving Frege’s Other Puzzle.Eric Snyder, Richard Samuels & Stewart Shapiro - 2022 - Philosophica Mathematica 30 (1):59-87.
    Number words seemingly function both as adjectives attributing cardinality properties to collections, as in Frege’s ‘Jupiter has four moons’, and as names referring to numbers, as in Frege’s ‘The number of Jupiter’s moons is four’. This leads to what Thomas Hofweber calls Frege’s Other Puzzle: How can number words function as modifiers and as singular terms if neither adjectives nor names can serve multiple semantic functions? Whereas most philosophers deny that one of these uses is genuine, we instead argue that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  20. Two Lost Operations of Arithmetic: Duplation and Mediation.Lloyd Strickland - 2022 - Mathematics Today 65:212-213.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. La «matemática situada» como propuesta de reflexión epistémica en clave histórico-social sobre la práctica matemática.Héctor Horacio Gerván - 2021 - Culturas Cientificas 2 (2):01-25.
    La presente investigación tiene como propósito general asumir un posicionamiento filosófico en clave histórico-social y de tipo anti-relativista para analizar el desarrollo histórico de la matemática, el cual aplicaremos a un caso en particular: la matemática del antiguo Egipto. Para ello se discutirán y criticarán, en primera instancia, determinadas posiciones filosóficas afines al cuasi-empirismo en matemática que, siendo relativistas, permitirán delinear nuestro propio posicionamiento en contraste: la existencia de una «matemática situada». Esta categoría filosófica tendrá como sustento teórico la noción (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. La matemática mixta en las investigaciones de G. W. Leibniz.José Gustavo Morales - 2021 - Culturas Cientificas 2 (2):42-52.
    Para favorecer la interacción disciplinar y recuperar la dimensión práctica del conocimiento matemático en la escuela secundaria, Yves Chevallard plantea la necesidad de introducir en los programas de estudio la matemática mixta. La matemática mixta, cuyo apogeo tuvo lugar en Europa entre los siglos XVI y XVIII, se propone el abordaje de problemas surgidos por fuera de la propia matemática valiéndose de nociones mecánicas -como la de centro de gravedad y fuerza centrífuga- y del empleo de variados instrumentos para realizar (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. Euclides entre los árabes.Norma Ivonne Ortega Zarazúa - 2021 - Culturas Cientificas 2 (1):76-105.
    Es común escuchar que el mundo Occidental debe a los árabes el descubrimiento del álgebra. No obstante, el desarrollo de esta disciplina puede interpretarse como un crisol de distintas tradiciones científicas que fue posible gracias a la clasificación, traducción y crítica tanto de los clásicos como de las obras que los árabes obtuvieron de los pueblos que conquistaron. Entre estos trabajos se encontraba Los Elementos de Euclides. Los Elementos fueron cuidadosamente traducidos durante el califato de Al-Ma’mūn por el matemático Mohammed (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history of the Polish philosophy of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Du Châtelet on the Need for Mathematics in Physics.Aaron Wells - 2021 - Philosophy of Science 88 (5):1137-1148.
    There is a tension in Emilie Du Châtelet’s thought on mathematics. The objects of mathematics are ideal or fictional entities; nevertheless, mathematics is presented as indispensable for an account of the physical world. After outlining Du Châtelet’s position, and showing how she departs from Christian Wolff’s pessimism about Newtonian mathematical physics, I show that the tension in her position is only apparent. Du Châtelet has a worked-out defense of the explanatory and epistemic need for mathematical objects, consistent with their metaphysical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Mathematics, isomorphism, and the identity of objects.Graham White - 2021 - Journal of Knowledge Structures and Systems 2 (2):56-58.
    We compare the medieval projects of commentaries and disputations with the modern projects of formal ontology and of mathematics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. Hermann Cohen’s Principle of the Infinitesimal Method: A Defense.Scott Edgar - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (2):440-470.
    In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism of the neo-Kantian Hermann Cohen's Principle of the Infinitesimal Method and its History (PIM). Russell's criticism is motivated by his concern that Cohen's account of the foundations of calculus saddles mathematics with the paradoxes of the infinitesimal and continuum, and thus threatens the very idea of mathematical truth. This paper defends Cohen against that objection of Russell's, and argues that properly understood, Cohen's views of limits and infinitesimals (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2020 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. Arnošt Kolman’s Critique of Mathematical Fetishism.Jakub Mácha & Jan Zouhar - 2020 - In Radek Schuster (ed.), The Vienna Circle in Czechoslovakia. Springer. pp. 135-150.
    Arnošt Kolman (1892–1979) was a Czech mathematician, philosopher and Communist official. In this paper, we would like to look at Kolman’s arguments against logical positivism which revolve around the notion of the fetishization of mathematics. Kolman derives his notion of fetishism from Marx’s conception of commodity fetishism. Kolman is aiming to show the fact that an entity (system, structure, logical construction) acquires besides its real existence another formal existence. Fetishism means the fantastic detachment of the physical characteristics of real things (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Aritmética e conhecimento simbólico: notas sobre o Tractatus Logico-Philosophicus e o ensino de filosofia da matemática.Gisele Dalva Secco - 2020 - Perspectiva Filosófica 47 (2):120-149.
    Departing from and closing with reflections on issues regarding teaching practices of philosophy of mathematics, I propose a comparison between the main features of the Leibnizian notion of symbolic knowledge and some passages from the Tractatus on arithmetic. I argue that this reading allows (i) to shed a new light on the specificities of the Tractarian definition of number, compared to those of Frege and Russell; (ii) to highlight the understanding of the nature of mathematical knowledge as symbolic or formal (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation or theorem (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. The Idea of Continuity as Mathematical-Philosophical Invariant.Eldar Amirov - 2019 - Metafizika 2 (8):p. 87-100.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  33. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and their interpretation. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  34. Introduction to G.E. Moore's Unpublished Review of The Principles of Mathematics.Kevin C. Klement - 2019 - Russell: The Journal of Bertrand Russell Studies 38:131-164.
    Several interesting themes emerge from G. E. Moore’s previously unpub­lished review of _The Principles of Mathematics_. These include a worry concerning whether mathematical notions are identical to purely logical ones, even if coextensive logical ones exist. Another involves a conception of infinity based on endless series neglected in the Principles but arguably involved in Zeno’s paradox of Achilles and the Tortoise. Moore also questions the scope of Russell’s notion of material implication, and other aspects of Russell’s claim that mathematics reduces (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  35. A Categorical Characterization of Accessible Domains.Patrick Walsh - 2019 - Dissertation, Carnegie Mellon University
    Inductively defined structures are ubiquitous in mathematics; their specification is unambiguous and their properties are powerful. All fields of mathematical logic feature these structures prominently: the formula of a language, the set of theorems, the natural numbers, the primitive recursive functions, the constructive number classes and segments of the cumulative hierarchy of sets. -/- This dissertation gives a mathematical characterization of a species of inductively defined structures, called accessible domains, which include all of the above examples except the set of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Religion and ideological confrontations in early Soviet mathematics: The case of P.A. Nekrasov.Dimitris Kilakos - 2018 - Almagest 9 (2):13-38.
    The influence of religious beliefs to several leading mathematicians in early Soviet years, especially among members of the Moscow Mathematical Society, had drawn the attention of militant Soviet marxists, as well as Soviet authorities. The issue has also drawn significant attention from scholars in the post-Soviet period. According to the currently prevailing interpretation, reported purges against Moscow mathematicians due to their religious inclination are the focal point of the relevant history. However, I maintain that historical data arguably offer reasons to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  37. Zur mathematischen Wissenschaftsphilosophie des Marburger Neukantianismus.Thomas Mormann - 2018 - In Christian Damböck (ed.), Philosophie und Wissenschaft bei Hermann Cohen. Springer. pp. 101 - 133.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Models in Geometry and Logic: 1870-1920.Patricia Blanchette - 2017 - In Niniiluoto Seppälä Sober (ed.), Logic, Methodology and Philosophy of Science - Proceedings of the 15th International Congress. College Publications. pp. 41-61.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  39. Predicativity and Feferman.Laura Crosilla - 2017 - In Gerhard Jäger & Wilfried Sieg (eds.), Feferman on Foundations: Logic, Mathematics, Philosophy. Cham: Springer. pp. 423-447.
    Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell's type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predica-tivity have since taken a life of their own, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Hilbert on Consistency as a Guide to Mathematical Reality.Fiona T. Doherty - 2017 - Logique Et Analyse 237:107-128.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. A Pluralist Foundation of the Mathematics of the First Half of the Twentieth Century.Antonino Drago - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):343-363.
    MethodologyA new hypothesis on the basic features characterizing the Foundations of Mathematics is suggested.Application of the methodBy means of it, the several proposals, launched around the year 1900, for discovering the FoM are characterized. It is well known that the historical evolution of these proposals was marked by some notorious failures and conflicts. Particular attention is given to Cantor's programme and its improvements. Its merits and insufficiencies are characterized in the light of the new conception of the FoM. After the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Early Modern Mathematical Principles and Symmetry Arguments.James Franklin - 2017 - In Franklin J. W. (ed.), The Idea of Principles in Early Modern Thought Interdisciplinary Perspectives. Routledge. pp. 16-44.
    The leaders of the Scientific Revolution were not Baconian in temperament, in trying to build up theories from data. Their project was that same as in Aristotle's Posterior Analytics: they hoped to find necessary principles that would show why the observations must be as they are. Their use of mathematics to do so expanded the Aristotelian project beyond the qualitative methods used by Aristotle and the scholastics. In many cases they succeeded.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  43. Math by Pure Thinking: R First and the Divergence of Measures in Hegel's Philosophy of Mathematics.Ralph M. Kaufmann & Christopher Yeomans - 2017 - European Journal of Philosophy 25 (4):985-1020.
    We attribute three major insights to Hegel: first, an understanding of the real numbers as the paradigmatic kind of number ; second, a recognition that a quantitative relation has three elements, which is embedded in his conception of measure; and third, a recognition of the phenomenon of divergence of measures such as in second-order or continuous phase transitions in which correlation length diverges. For ease of exposition, we will refer to these three insights as the R First Theory, Tripartite Relations, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  44. Aristoteles’in Matematik Felsefesi ve Matematik Soyut­lama.Murat Kelikli - 2017 - Beytulhikme An International Journal of Philosophy 7 (2):33-49.
    Although there are many questions to be asked about philosophy of mathematics, the fundamental questions to be asked will be questions about what the mathematical object is in view of being and what the mathematical reasoning is in view of knowledge. It is clear that other problems will develop in parallel within the framework of the answers to these questions. For this rea­ son, when we approach Aristotle's philosophy of mathematics over these two basic problems, we come up with the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Frege's Begriffsschrift is Indeed First-Order Complete.Yang Liu - 2017 - History and Philosophy of Logic 38 (4):342-344.
    It is widely taken that the first-order part of Frege's Begriffsschrift is complete. However, there does not seem to have been a formal verification of this received claim. The general concern is that Frege's system is one axiom short in the first-order predicate calculus comparing to, by now, the standard first-order theory. Yet Frege has one extra inference rule in his system. Then the question is whether Frege's first-order calculus is still deductively sufficient as far as the first-order completeness is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  46. Is Geometry Analytic?David Mwakima - 2017 - Dianoia 1 (4):66 - 78.
    In this paper I present critical evaluations of Ayer and Putnam's views on the analyticity of geometry. By drawing on the historico-philosophical work of Michael Friedman on the relativized apriori; and Roberto Torretti on the foundations of geometry, I show how we can make sense of the assertion that pure geometry is analytic in Carnap's sense.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  47. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle on which (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Russell’s method of analysis and the axioms of mathematics.Lydia Patton - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. London, United Kingdom: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, Russell’s (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Hermann von Helmholtz, Philosophische und populärwissenschaftliche Schriften. 3 Bände.Gregor Schiemann, Michael Heidelberger & Helmut Pulte (eds.) - 2017 - Hamburg: Meiner.
    Aus dem vielfältigen Werk von Hermann von Helmholtz versammelt diese Ausgabe die im engeren Sinne philosophischen Abhandlungen, vor allem zur Wissenschaftsphilosophie und Erkenntnistheorie, sowie Vorträge und Reden, bei denen der Autor seine Ausnahmestellung im Wissenschaftsbetrieb nutzte, um die Wissenschaften und ihre Institutionen in der bestehenden Form zu repräsentieren und zu begründen. Ein Philosoph wollte Helmholtz nicht sein, aber er legte der philosophischen Reflexion wissenschaftlicher Erkenntnis und wissenschaftlichen Handelns große Bedeutung bei. Vor allem bezog er, in der Regel ausgehend von seinen (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  50. Philosophy and Mathematics at the Turn of the 18th Century: New Perspectives – Philosophie et mathématiques au tournant du XVIIIe siècle: perspectives nouvelles.Andrea Strazzoni & Marco Storni (eds.) - 2017 - Parma: E-theca OnLineOpenAccess Edizioni.
    The essays gathered in this issue of the journal Noctua focus on the various relationships that were established between philosophy and mathematics from Galileo and Descartes to Kant, passing by Newton.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 124