Abstract
Several developments for diverse scientific goals, mostly in physics and physiology, had to take place, which eventually gave us fMRI as one of the central research paradigms of contemporary cognitive neuroscience. This technique stands on solid foundations established by the physics of magnetic resonance and the physiology of hemodynamics and is complimented by computational and statistical techniques. I argue, and support using concrete examples, that these foundations give rise to a productive theory-ladenness in fMRI, which enables researchers to identify and control for the types of methodological and inferential errors. Consequently, this makes it possible for researchers to represent and investigate cognitive phenomena in terms of hemodynamic data and for experimental knowledge to grow independently of large scale theories of cognition.