A Review of Data-Intensive Approaches for Sustainability: Methodology, Epistemology, Normativity, and Ontology

Sustainability Science 15 (2020)
  Copy   BIBTEX

Abstract

With the growth of data, data-intensive approaches for sustainability are becoming widespread and have been endorsed by various stakeholders. To understand their implications, in this paper data-intensive approaches for sustainability will be explored by conducting an extensive review. The current data-intensive approaches are defined as an amalgamation of traditional data-collection methods, like surveys and data from monitoring networks, with new data-collection methods that involve new information communication technology. Based on a comprehensive review of the current dataintensive approaches for sustainability, key challenges are identified: the lack of data availability, diverse indicators developed from a narrowly viewed base, diverse definitions and values, skewed global representation, and the lack of social and economic information collected, especially among the business indicators. To clarify the implications of these trends, four major research assumptions regarding dataintensive approaches are elaborated: the methodology, epistemology, normativity, and ontology. Caution is required when data-intensive approaches are masked as “objective”. Overcoming this issue requires interdisciplinary and community-based approaches that can offer ways to address the subjectivities of data-intensive approaches. The current challenges to interdisciplinarity and community-based approaches are also identified, and possible solutions are explored, so that researchers can employ them to make the best use of data-intensive approaches.

Analytics

Added to PP
2022-06-20

Downloads
519 (#27,520)

6 months
164 (#14,152)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?