Why study movement variability in autism?

In Torres Elizabeth & Whyatt Caroline (eds.), Autism the movement-sensing approach. CRC Press - Taylor & Francis Group (2017)
  Copy   BIBTEX

Abstract

Autism has been defined as a disorder of social cognition, interaction and communication where ritualistic, repetitive behaviors are commonly observed. But how should we understand the behavioral and cognitive differences that have been the main focus of so much autism research? Can high-level cognitive processes and behaviors be identified as the core issues people with autism face, or do these characteristics perhaps often rather reflect individual attempts to cope with underlying physiological issues? Much research presented in this volume will point to the latter possibility, i.e. that people on the autism spectrum cope with issues at much lower physiological levels pertaining not only to Central Nervous Systems (CNS) function, but also to peripheral and autonomic systems (PNS, ANS) (Torres, Brincker, et al. 2013). The question that we pursue in this chapter is what might be fruitful ways of gaining objective measures of the large-scale systemic and heterogeneous effects of early atypical neurodevelopment; how to track their evolution over time and how to identify critical changes along the continuum of human development and aging. We suggest that the study of movement variability—very broadly conceived as including all minute fluctuations in bodily rhythms and their rates of change over time (coined micro-movements (Figure 1A-B) (Torres, Brincker, et al. 2013))—offers a uniquely valuable and entirely objectively quantifiable lens to better assess, understand and track not only autism but cognitive development and degeneration in general. This chapter presents the rationale firstly behind this focus on micro-movements and secondly behind the choice of specific kinds of data collection and statistical metrics as tools of analysis (Figure 1C). In brief the proposal is that the micro-movements (defined in Part I – Chapter 1), obtained using various time scales applied to different physiological data-types (Figure 1), contain information about layered influences and temporal adaptations, transformations and integrations across anatomically semi-independent subsystems that crosstalk and interact. Further, the notion of sensorimotor re-afference is used to highlight the fact that these layered micro-motions are sensed and that this sensory feedback plays a crucial role in the generation and control of movements in the first place. In other words, the measurements of various motoric and rhythmic variations provide an access point not only to the “motor systems”, but also access to much broader central and peripheral sensorimotor and regulatory systems. Lastly, we posit that this new lens can also be used to capture influences from systems of multiple entry points or collaborative control and regulation, such as those that emerge during dyadic social interactions.

Author's Profile

Maria Brincker
University of Massachusetts, Boston

Analytics

Added to PP
2017-02-03

Downloads
807 (#25,698)

6 months
138 (#29,538)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?