On the expressive power of Łukasiewicz square operator

Download Edit this record How to cite View on PhilPapers
The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: ∗x=x⊙x⁠, where ⊙ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form n+1 where n belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations
(categorize this paper)
PhilPapers/Archive ID
Upload history
Archival date: 2021-10-27
View other versions
Added to PP index

Total views
17 ( #65,422 of 65,623 )

Recent downloads (6 months)
17 ( #41,043 of 65,623 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.