View topic on PhilPapers for more information
Related categories

13 found
Order:
More results on PhilPapers
  1. added 2019-06-03
    Curry’s Paradox and Ω -Inconsistency.Andrew Bacon - 2013 - Studia Logica 101 (1):1-9.
    In recent years there has been a revitalised interest in non-classical solutions to the semantic paradoxes. In this paper I show that a number of logics are susceptible to a strengthened version of Curry's paradox. This can be adapted to provide a proof theoretic analysis of the omega-inconsistency in Lukasiewicz's continuum valued logic, allowing us to better evaluate which logics are suitable for a naïve truth theory. On this basis I identify two natural subsystems of Lukasiewicz logic which individually, but (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. added 2018-04-07
    Maximality in Finite-Valued Lukasiewicz Logics Defined by Order Filters.Marcelo E. Coniglio, Francesc Esteva, Joan Gispert & Lluis Godo - forthcoming - Journal of Logic and Computation.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. added 2017-11-07
    Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic.Matthias Baaz & Richard Zach - 2000 - In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. added 2017-10-10
    Completeness of a Hypersequent Calculus for Some First-Order Gödel Logics with Delta.Matthias Baaz, Norbert Preining & Richard Zach - 2006 - In 36th International Symposium on Multiple-valued Logic. May 2006, Singapore. Proceedings. Los Alamitos: IEEE Press.
    All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2017-08-13
    Quantified Propositional Gödel Logics.Matthias Baaz, Agata Ciabattoni & Richard Zach - 2000 - In Andrei Voronkov & Michel Parigot (eds.), Logic for Programming and Automated Reasoning. 7th International Conference, LPAR 2000. Berlin: Springer. pp. 240-256.
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. added 2017-08-13
    Compact Propositional Gödel Logics.Matthias Baaz & Richard Zach - 1998 - In 28th IEEE International Symposium on Multiple-Valued Logic, 1998. Proceedings. Los Alamitos: IEEE Press. pp. 108-113.
    Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. added 2017-08-13
    Incompleteness of a First-Order Gödel Logic and Some Temporal Logics of Programs.Matthias Baaz, Alexander Leitsch & Richard Zach - 1996 - In Hans Kleine Büning (ed.), Computer Science Logic. CSL 1995. Selected Papers. Berlin: Springer. pp. 1--15.
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. added 2017-05-31
    Many-Valued Logics. A Mathematical and Computational Introduction.Luis M. Augusto - 2017 - London: College Publications.
    Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and they are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. added 2016-08-29
    Fuzziness and the Sorites Paradox.Marcelo Vasconez - 2006 - Dissertation, Catholic University of Louvain
    The dissertation has two parts, each dealing with a problem, namely: 1) What is the most adequate account of fuzziness -the so-called phenomenon of vagueness?, and 2) what is the most plausible solution to the sorites, or heap paradox? I will try to show that fuzzy properties are those which are gradual, amenable to be possessed in a greater or smaller extent. Acknowledgement of degrees in the instantiation of a property allows for a gradual transition from one opposite to the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. added 2015-05-11
    4. Contradictorial Gradualism Vs. Discontinuism: Two Views On Fuzziness And The Transition Problem.Marcelo VÁsconez - 2006 - Logique Et Analyse 49 (195).
    The dissertation has two parts, each dealing with a problem, namely: 1) What is the most adequate account of fuzziness -the so-called phenomenon of vagueness?, and 2) what is the most plausible solution to the sorites, or heap paradox? I will try to show that fuzzy properties are those which are gradual, amenable to be possessed in a greater or smaller extent. Acknowledgement of degrees in the instantiation of a property allows for a gradual transition from one opposite to the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. added 2015-04-09
    A Simple Logic for Comparisons and Vagueness.Theodore J. Everett - 2000 - Synthese 123 (2):263-278.
    This article provide an intuitive semantic account of a new logic for comparisons (CL), in which atomic statements are assigned both a classical truth-value and a “how much” value or extension in the range [0, 1]. The truth-value of each comparison is determined by the extensions of its component sentences; the truth-value of each atomic depends on whether its extension matches a separate standard for its predicate; everything else is computed classically. CL is less radical than Casari’s comparative logics, in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. added 2015-03-13
    Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts. [REVIEW]George Lakoff - 1973 - Journal of Philosophical Logic 2 (4):458 - 508.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   59 citations  
  13. added 2012-12-12
    Some Strong Conditionals for Sentential Logics.Jason Zarri - manuscript
    In this article I define a strong conditional for classical sentential logic, and then extend it to three non-classical sentential logics. It is stronger than the material conditional and is not subject to the standard paradoxes of material implication, nor is it subject to some of the standard paradoxes of C. I. Lewis’s strict implication. My conditional has some counterintuitive consequences of its own, but I think its pros outweigh its cons. In any case, one can always augment one’s language (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark