Abstract
There is a deeply entrenched view in philosophy and physics, the closed systems view, according to which isolated systems are conceived of as fundamental. On this view, when a system is under the influence of its environment this is described in terms of a coupling between it and a separate system which taken together are isolated. We argue against this view, and in favor of the alternative open systems view, for which systems interacting with their environment are conceived of as fundamental, and the environment's influence is represented via the dynamical equations that govern the system's evolution. Taking quantum theories of closed and open systems as our case study, and considering three alternative notions of fundamentality: (i) ontic fundamentality, (ii) epistemic fundamentality, and (iii) explanatory fundamentality, we argue that the open systems view is fundamental, and that this has important implications for the philosophy of physics, the philosophy of science, and for metaphysics.