Contents
106 found
Order:
1 — 50 / 106
  1. The Ontic Probability Interpretation of Quantum Theory – Part IV: How to Complete Special Relativity and Merge it with Quantum Theory.Felix Alba-Juez - manuscript
    We have ignored for a century that the incompleteness of Quantum Theory (QT) is inseparable from the incompleteness of Special Relativity (RT). In this article, I claim that the latter has been gravely incomplete vis à vis the former from 1927 until today. But completing RT in the light of QT is not as simple as merely postulating nonlocality and stochasticity as “elements of reality” (which is de facto done by most physicists and pragmatic philosophers); otherwise, RT would not still (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. On the duality between existence and information.David Ellerman - manuscript
    Recent developments in pure mathematics and in mathematical logic have uncovered a fundamental duality between "existence" and "information." In logic, the duality is between the Boolean logic of subsets and the logic of quotient sets, equivalence relations, or partitions. The analogue to an element of a subset is the notion of a distinction of a partition, and that leads to a whole stream of dualities or analogies--including the development of new logical foundations for information theory parallel to Boole's development of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Partitions and Objective Indefiniteness.David Ellerman - manuscript
    Classical physics and quantum physics suggest two meta-physical types of reality: the classical notion of a objectively definite reality with properties "all the way down," and the quantum notion of an objectively indefinite type of reality. The problem of interpreting quantum mechanics (QM) is essentially the problem of making sense out of an objectively indefinite reality. These two types of reality can be respectively associated with the two mathematical concepts of subsets and quotient sets (or partitions) which are category-theoretically dual (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is not to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Why the de Broglie-Bohm theory is probably wrong.Shan Gao - manuscript
    We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Derivation of the Schrödinger equation.Shan Gao - manuscript
    It is shown that the heuristic "derivation" of the Schrödinger equation in quantum mechanics textbooks can be turned into a real derivation by resorting to spacetime translation invariance and relativistic invariance.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Quantum Mechanical EPRBA covariance and classical probability.Han Geurdes - manuscript
    Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Wigner’s Friend Depends on Self-Contradictory Quantum Amplification.Andrew Knight - manuscript
    In a recent paper, Zukowski and Markiewicz showed that Wigner’s Friend (and, by extension, Schrodinger’s Cat) can be eliminated as physical possibilities on purely logical grounds. I validate this result and demonstrate the source of the contradiction in a simple experiment in which a scientist S attempts to measure the position of object |O⟩ = |A⟩S +|B⟩S by using measuring device M chosen so that |A⟩M ≈ |A⟩S and |B⟩M ≈ |B⟩S. I assume that the measurement occurs by quantum amplification (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. A-Theory, Gedankenexperiments, and Quantum Gravity.Paul Merriam & M. A. Z. Habeeb - manuscript
    This paper proposes a novel theoretical framework for reconciling quantum mechanics with relativity that leads to a theory of quantum gravity by examining the fundamental nature of time. In the first section we argue that it is possible to perform an experiment for oneself in which, with enough ‘internal technology’ it is possible to distinguish between one’s experience of time on the one hand, and one’s thoughts about one’s experience of time on the other hand. The former gives McTaggart's A-series (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Quantum mechanics foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of fermions and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Bohr’s Relational Holism and the classical-quantum Interaction.Mauro Dorato - 2016
    In this paper I present and critically discuss the main strategies that Bohr used and could have used to fend off the charge that his interpretation does not provide a clear-cut distinction between the classical and the quantum domain. In particular, in the first part of the paper I reassess the main arguments used by Bohr to advocate the indispensability of a classical framework to refer to quantum phenomena. In this respect, by using a distinction coming from an apparently unrelated (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  13. (1 other version)Protective Measurement and the Meaning of the Wave Function.Shan Gao - 2011
    This article analyzes the implications of protective measurement for the meaning of the wave function. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is not continuous but (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Derivation of the Meaning of the Wave Function.Shan Gao - 2011
    We show that the physical meaning of the wave function can be derived based on the established parts of quantum mechanics. It turns out that the wave function represents the state of random discontinuous motion of particles, and its modulus square determines the probability density of the particles appearing in certain positions in space.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   10 citations  
  17. 'Charge without charge' in the stochastic interpretation of quantum mechanics.Mark Sharlow - 2007
    In this note I examine some implications of stochastic interpretations of quantum mechanics for the concept of "charge without charge" presented by Wheeler and Misner. I argue that if a stochastic interpretation of quantum mechanics were correct, then certain shortcomings of the "charge without charge" concept could be overcome.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. What branching spacetime might do for physics.Mark Sharlow - 2007
    In recent years, the branching spacetime (BST) interpretation of quantum mechanics has come under study by a number of philosophers, physicists and mathematicians. This paper points out some implications of the BST interpretation for two areas of quantum physics: (1) quantum gravity, and (2) stochastic interpretations of quantum mechanics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Have underground radiation measurements refuted the Orch OR theory?Kelvin J. McQueen - forthcoming - Physics of Life Reviews.
    In [1] it is claimed that, based on radiation emission measurements described in [2], a certain “variant” of the Orch OR theory has been refuted. I agree with this claim. However, the significance of this result for Orch OR per se is unclear. After all, the refuted “variant” was never advocated by anyone, and it contradicts the views of Hameroff and Penrose (hereafter: HP) who invented Orch OR [3]. My aim is to get clear on this situation. I argue that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Was David Bohm a Wave Function Realist?Paavo Pylkkänen - 2025 - In Avril Styrman, Paavo Pylkkänen & Saara Wuokko, Physics and Reality: International Conference on Philosophy of Physics 4.-6.6.2024 Helsinki, Finland. Bristol, UK: IOP Publishing.
    One of the more radical ideas to have emerged in recent metaphysics of quantum theory is wave function realism, according to which the fundamental spatial framework of the world is one of very many dimensions. At first sight this idea sounds similar to the notion of a multidimensional implicate order the physicist David Bohm proposed on the basis of quantum theory in the 1980s. This paper briefly considers Bohm’s various attempts to provide a realist interpretation of the wave function in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. Consciência e mecânica quântica: uma abordagem filosófica.Raoni Arroyo - 2024 - São Paulo: LF Editorial.
    This book deals with some ontological implications of standard non-relativistic quantum mechanics, and the use of the notion of `consciousness' to solve the measurement problem.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. The Open Systems View.Michael E. Cuffaro & Stephan Hartmann - 2024 - Philosophy of Physics 2 (1):6:1-27.
    There is a deeply entrenched view in philosophy and physics, the closed systems view, according to which isolated systems are conceived of as fundamental. On this view, when a system is under the influence of its environment this is described in terms of a coupling between it and a separate system which taken together are isolated. We argue against this view, and in favor of the alternative open systems view, for which systems interacting with their environment are conceived of as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Non-separability, locality and criteria of reality: a reply to Waegell and McQueen.Paolo Faglia - 2024 - Studies in History and Philosophy of Science 106 (C):43-53.
    Using a ‘reformulation of Bell’s theorem’, Waegell and McQueen (2020) argue that any empirically adequate theory that is local and does not involve retro-causation or fine-tuning must be a many-worlds theory. They go on to analyze several prominent many-worlds interpretations and conclude that non-separable many-worlds theories whose ontology is given by the wavefunction involve superluminal causation, while separable many-worlds theories (e.g. Waegell, 2021; Deutsch and Hayden 2000) do not. I put forward three claims. (A) I challenge their argument for relying (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa, Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical theory. We argue that this is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. space time normalisation in GWRf Theory.Joe Coles - 2023 - International Journal of Quantum Foundations 9 (2).
    Roderich Tumulka’s GRWf theory offers a simple, realist and relativistic solution to the measurement problem of quantum mechanics. It is achieved by the introduction of a stochastic dynamical collapse of the wavefunction. An issue with dynamical collapse theories is that they involve an amendment to the Schrodinger equation; amending the dynamics of such a tried and tested theory is seen by some as problematic. This paper proposes an alteration to GRWf that avoids the need to amend the Schrodinger equation via (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. Distributed information is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. The Role of Reconstruction in the Elucidation of Quantum Theory.Philip Goya - 2023 - In Philipp Berghofer & Harald A. Wiltsche, Phenomenology and Qbism: New Approaches to Quantum Mechanics. New York, NY: Routledge.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Problems with String Theory in Quantum Gravity.Nicolae Sfetcu - 2023 - Cunoașterea Științifică 2 (4):3-8.
    String theory, a framework that aims to reconcile general relativity and quantum mechanics, holds a unique position in the field of quantum gravity. In quantum field theory, the main obstacle is the occurrence of the untreatable infinities in the interactions of the particles due to the possibility of arbitrary distances between the point particles. Strings, as extended objects, provide a better framework, which allows finite calculations. In the realm of theoretical physics, where theories often push the boundaries of human understanding, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. Gravitational decoherence: A thematic overview.C. Anastopoulos & B. L. Hu - 2022 - AVS Quantum Science 4:015602.
    Gravitational decoherence (GD) refers to the effects of gravity in actuating the classical appearance of a quantum system. Because the underlying processes involve issues in general relativity (GR), quantum field theory (QFT), and quantum information, GD has fundamental theoretical significance. There is a great variety of GD models, many of them involving physics that diverge from GR and/or QFT. This overview has two specific goals along with one central theme:(i) present theories of GD based on GR and QFT and explore (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Superdeterminism: a reappraisal.Giacomo Andreoletti & Louis Vervoort - 2022 - Synthese 200 (5):1-20.
    This paper addresses a particular interpretation of quantum mechanics, i.e. superdeterminism. In short, superdeterminism i) takes the world to be fundamentally deterministic, ii) postulates hidden variables, and iii) contra Bell, saves locality at the cost of violating the principle of statistical independence. Superdeterminism currently enjoys little support in the physics and philosophy communities. Many take it to posit the ubiquitous occurrence of hard-to-digest conspiratorial and coincidental events; others object that violating the principle of statistical independence implies the death of the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  31. Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such debate, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  32. Taking models seriously and being a linguistic realist.Raoni Arroyo & Gilson Olegario da Silva - 2022 - Principia: An International Journal of Epistemology 26 (1):73-94.
    Carnap's conception of linguistic frameworks is widespread; however, it is not entirely clear nor consensual to pinpoint what is the influence of his stance within the traditional realist/anti-realist debate. In this paper, we place Carnap as a proponent of a scientific realist stance, by presenting what he called “linguistic realism”. Some possible criticisms are considered, and a case study is offered with wave function realism, a popular position in the philosophy of quantum mechanics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. UnQuantum Woolf: The Many Intellectual Contexts of To the Lighthouse's Metaphorical Wave-Particle Binary.Xavier Cousin - 2022 - Dissertation, Durham University
    This thesis is a sceptical investigation into the notion that the metaphorical wave-particle binary of Virginia Woolf's To the Lighthouse is related to quantum physics. Indeed, the field of literature and science has employed conceptual similarities as the main means of connecting quantum concepts to novels, however, this has led to a host of scholarly difficulties, prompting the need for a re-examination of analogical linkages. Woolf is the model candidate for such a re-examination, given her historical and philosophical proximity with (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  34. John Bell on ‘Subject and Object’: An Exchange.Hans Halvorson & Jeremy Butterfield - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (2):305-324.
    This three-part paper comprises: (i) a critique by Halvorson of Bell’s (1973) paper ‘Subject and Object’; (ii) a comment by Butterfield; (iii) a reply by Halvorson. An Appendix gives the passage from Bell that is the focus of Halvorson’s critique.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  35. The wave function as a true ensemble.Jonte Hance & Sabine Hossenfelder - 2022 - Proceedings of the Royal Society 478 (2262).
    In quantum mechanics, the wavefunction predicts probabilities of possible measurement outcomes, but not which individual outcome is realised in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble interpretations which reproduce (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Could wavefunctions simultaneously represent knowledge and reality?Jonte Hance, John Rarity & James Ladyman - 2022 - Quantum Studies: Mathematics and Foundations 9 (3):333-341.
    In discussion of the interpretation of quantum mechanics the terms ‘ontic’ and ‘epistemic’ are often used in the sense of pertaining to what exists, and pertaining to cognition or knowledge respectively. The terms are also often associated with the formal definitions given by Harrigan and Spekkens for the wavefunction in quantum mechanics to be ψ-ontic or ψ-epistemic in the context of the ontological models framework. The formal definitions are contradictories, so that the wavefunction can be either ψ-epistemic or ψ-ontic but (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Grounded Shadows, Groundless Ghosts.Ezra Rubenstein - 2022 - British Journal for the Philosophy of Science 73 (3):723-750.
    According to a radical account of quantum metaphysics that I label ‘high-dimensionalism’, ordinary objects are the ‘shadows’ of high-dimensional fundamental ontology. Critics—especially Maudlin —allege that high-dimensionalism cannot provide a satisfactory explanation of the manifest image. In this paper, I examine the two main ideas behind these criticisms: that high-dimensionalist connections between fundamental and non-fundamental are 1) inscrutable, and 2) arbitrary. In response to the first, I argue that there is no metaphysically significant contrast regarding the scrutability of low- and high-dimensionalist (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. A Retraction of The Cosmic Sphere.Kip Sewell - 2022 - Rond Media Library.
    Abstract: In a 1999 book entitled 'The Cosmic Sphere', the author proposed an unconventional model of the Universe intended to solve conceptual and empirical problems facing the Big Bang theory. The author has since had second thoughts, however, and has concluded that his proposed Cosmic Sphere Model (CSM) of the Universe is flawed and cannot be accurate. In this article, the author provides an overview of 'The Cosmic Sphere' and CSM, points out the errors of both, analyzes the implications of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  39. The Ontological and Epistemological Necessity of Local Beables in Quantum Mechanics.Maryam Ansari & Alireza Mansouri - 2021 - Persian Journal for Analytic Philosophy 25 (38):33-56.
    Bell introduces local beables in contrast to quantum mechanical observables. The present article emphasizes the importance and necessity of introducing local beables in quantum mechanics from the ontological and epistemological points of view. We argue that suggesting beables in the ontology of quantum mechanics is necessary to give an adequate account of its testability.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  40. Is the Photon Really a Particle?Paul Klevgard - 2021 - Optik 237 (166679):N/A.
    Photons deliver their energy and momentum to a point on a material target. It is commonplace to attribute this to particle impact. But since the in-flight photon also has a wave nature, we are stuck with the paradox of wave-particle duality. It is argued here that the photon’s wave nature is indisputable, but its particle nature is open to question. Photons deliver energy. The problem with invoking impact as a means of delivery is that energy becomes a payload which in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. The metaphysical foundations of physics (introduction to special issue).Carlos Romero - 2021 - Critica 53 (159):3-13.
    This is the introduction to the special issue of Crítica on the metaphysics of physics, featuring papers by Valia Allori, Tim Maudlin and Gustavo Esteban Romero.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  42. Wigner’s friend and Relational Quantum Mechanics: A Reply to Laudisa.Nikki Weststeijn - 2021 - Foundations of Physics 51 (4):1-13.
    Relational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the system and the observer, there is no inconsistency in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Juha Saatsi & Steven French, Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  44. CRITIQUE OF IMPURE REASON: Horizons of Possibility and Meaning.Steven James Bartlett - 2020 - Salem, USA: Studies in Theory and Behavior.
    PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make it more widely available beyond university libraries to individual readers, the non-profit publisher and the author have agreed to issue the printed edition at cost. ●●●●● The printed edition was released on September 1, 2021 and is now available through (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. How Humean is Bohumianism?Tomasz Bigaj & Antonio Vassallo - 2020 - Foundations of Physics (10):1-18.
    An important part of the influential Humean doctrine in philosophy is the supervenience principle (sometimes referred to as the principle of separability). This principle asserts that the complete state of the world supervenes on the intrinsic properties of its most fundamental components and their spatiotemporal relations (the so-called Humean mosaic). There are well-known arguments in the literature purporting to show that in quantum mechanics the Humean supervenience principle is violated, due to the existence of entangled states. Recently, however, arguments have (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. No Paradox in Wave–Particle Duality.Andrew Knight - 2020 - Foundations of Physics 50 (11):1723-1727.
    The assertion that an experiment by Afshar et al. demonstrates violation of Bohr’s Principle of Complementarity is based on the faulty assumption that which-way information in a double-slit interference experiment can be retroactively determined from a future measurement.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. How the Many Worlds Interpretation brings Common Sense to Paradoxical Quantum Experiments.Kelvin J. McQueen & Lev Vaidman - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg, Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 40-60.
    The many worlds interpretation of quantum mechanics (MWI) states that the world we live in is just one among many parallel worlds. It is widely believed that because of this commitment to parallel worlds, the MWI violates common sense. Some go so far as to reject the MWI on this basis. This is despite its myriad of advantages to physics (e.g. consistency with relativity theory, mathematical simplicity, realism, determinism, etc.). Here, we make the case that common sense in fact favors (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. A consciousness-based quantum objective collapse model.Elias Okon & Miguel Ángel Sebastián - 2020 - Synthese 197 (9):3947-3967.
    Ever since the early days of quantum mechanics it has been suggested that consciousness could be linked to the collapse of the wave function. However, no detailed account of such an interplay is usually provided. In this paper we present an objective collapse model where the collapse operator depends on integrated information, which has been argued to measure consciousness. By doing so, we construct an empirically adequate scheme in which superpositions of conscious states are dynamically suppressed. Unlike other proposals in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. El Teorema de Kochen-Specker y las Semánticas no deterministas.Juan Pablo Jorge - 2019 - Buenos Aires: Departamento de Física, Universidad de Buenos Aires.
    Desde los trabajos de von Neumann y Birkhoff hasta la actualidad, el estudio de distintas estructuras algebraicas asociadas al formalismo cuántico ha dado lugar a interesantes desarrollos. A modo de ejemplo, el teorema de Kochen-Specker ha tenido una fuerte repercusión en los fundamentos e interpretación de la teoría cuántica. En este trabajo, prestaremos especial atención al abordaje lógico-algebraico iniciado por von Neumann y Birkhoff (aunque también discutiremos otros formalismos, tales como la lógica de la superposición de Tzouvaras). Se presenta el (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  50. On the Fundamentality of Meaning.Brian D. Josephson - 2018 - In FQXi Essays on 'What Is Fundamental?'.
    The mainstream view of meaning is that it is emergent, not fundamental, but some have disputed this, asserting that there is a more fundamental level of reality than that addressed by current physical theories, and that matter and meaning are in some way entangled. In this regard there are intriguing parallels between the quantum and biological domains, suggesting that there may be a more fundamental level underlying both. I argue that the organisation of this fundamental level is already to a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 106