Results for 'intuitionistic logic'

1000+ found
Order:
  1. On an Intuitionistic Logic for Pragmatics.Gianluigi Bellin, Massimiliano Carrara & Daniele Chiffi - 2018 - Journal of Logic and Computation 50 (28):935–966..
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justi cations and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2.  63
    Set Theory INC# Based on Intuitionistic Logic with Restricted Modus Ponens Rule (Part. I).Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (2):73-88.
    In this article Russell’s paradox and Cantor’s paradox resolved successfully using intuitionistic logic with restricted modus ponens rule.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  43
    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic Via Nested Sequents.Tim Lyon, Alwen Tiu, Rajeev Gore & Ranald Clouston - 2020 - In Maribel Fernandez & Anca Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Dagstuhl, Germany: pp. 1-16.
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  66
    On Deriving Nested Calculi for Intuitionistic Logics From Semantic Systems.Tim Lyon - 2020 - In Sergei Artemov & Anil Nerode (eds.), Logical Foundations of Computer Science. Cham: pp. 177-194.
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Intuitionistic Logic and its Philosophy.Panu Raatikainen - 2013 - Al-Mukhatabat. A Trilingual Journal For Logic, Epistemology and Analytical Philosophy (6):114-127.
    Download  
     
    Export citation  
     
    Bookmark  
  7. Vagueness and Intuitionistic Logic.Ian Rumfitt - forthcoming - In Alexander Miller (ed.), Language, Logic,and Mathematics: Themes from the Philosophy of Crispin Wright. Oxford University Press.
    In his essay ‘“Wang’s Paradox”’, Crispin Wright proposes a solution to the Sorites Paradox (in particular, the form of it he calls the ‘Paradox of Sharp Boundaries’) that involves adopting intuitionistic logic when reasoning with vague predicates. He does not give a semantic theory which accounts for the validity of intuitionistic logic (and the invalidity of stronger logics) in that area. The present essay tentatively makes good the deficiency. By applying a theorem of Tarski, it shows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Five Observations Concerning the Intended Meaning of the Intuitionistic Logical Constants.Gustavo Fernández Díez - 2000 - Journal of Philosophical Logic 29 (4):409-424.
    This paper contains five observations concerning the intended meaning of the intuitionistic logical constants: (1) if the explanations of this meaning are to be based on a non-decidable concept, that concept should not be that of 'proof'; (2) Kreisel's explanations using extra clauses can be significantly simplified; (3) the impredicativity of the definition of → can be easily and safely ameliorated; (4) the definition of → in terms of 'proofs from premises' results in a loss of the inductive character (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding Epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10.  1
    Set Theory INC# Based on Intuitionistic Logic with Restricted Modus Ponens Rule.Jaykov Foukzon - forthcoming
    In this book set theory INC# based on intuitionistic logic with restricted modus ponens rule is proposed. It proved that intuitionistic logic with restricted modus ponens rule can to safe Cantor naive set theory from a triviality. Similar results for paraconsistent set theories were obtained in author papers [13]-[16].
    Download  
     
    Export citation  
     
    Bookmark  
  11.  18
    On the Correspondence Between Nested Calculi and Semantic Systems for Intuitionistic Logics.Tim Lyon - 2021 - Journal of Logic and Computation 31 (1):213-265.
    This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12.  9
    Set Theory INC# Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part.II) Hyper Inductive Definitions.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (4):22.
    In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Intuitionism and the Modal Logic of Vagueness.Susanne Bobzien & Ian Rumfitt - 2020 - Journal of Philosophical Logic 49 (2):221-248.
    Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation.Nils Kürbis - 2019 - Bulletin of the Section of Logic 48 (2):81-97.
    This paper presents a way of formalising definite descriptions with a binary quantifier ι, where ιx[F, G] is read as ‘The F is G’. Introduction and elimination rules for ι in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ιx[F, G] are given, and it is shown that deductions in the system can be brought into normal form.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. From Classical to Intuitionistic Probability.Brian Weatherson - 2003 - Notre Dame Journal of Formal Logic 44 (2):111-123.
    We generalize the Kolmogorov axioms for probability calculus to obtain conditions defining, for any given logic, a class of probability functions relative to that logic, coinciding with the standard probability functions in the special case of classical logic but allowing consideration of other classes of "essentially Kolmogorovian" probability functions relative to other logics. We take a broad view of the Bayesian approach as dictating inter alia that from the perspective of a given logic, rational degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  16.  72
    Two Treatments of Definite Descriptions in Intuitionist Negative Free Logic.Nils Kürbis - 2019 - Bulletin of the Section of Logic 48 (4):299-317.
    Sentences containing definite descriptions, expressions of the form ‘The F’, can be formalised using a binary quantifier ι that forms a formula out of two predicates, where ιx[F, G] is read as ‘The F is G’. This is an innovation over the usual formalisation of definite descriptions with a term forming operator. The present paper compares the two approaches. After a brief overview of the system INFι of intuitionist negative free logic extended by such a quantifier, which was presented (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  26
    From Intuitionism to Many-Valued Logics Through Kripke Models.Saeed Salehi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & Mohammad Saleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 339-348.
    Intuitionistic Propositional Logic is proved to be an infinitely many valued logic by Gödel (Kurt Gödel collected works (Volume I) Publications 1929–1936, Oxford University Press, pp 222–225, 1932), and it is proved by Jaśkowski (Actes du Congrés International de Philosophie Scientifique, VI. Philosophie des Mathématiques, Actualités Scientifiques et Industrielles 393:58–61, 1936) to be a countably many valued logic. In this paper, we provide alternative proofs for these theorems by using models of Kripke (J Symbol Logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Bilateralist Detours: From Intuitionist to Classical Logic and Back.Nils Kürbis - 2017 - Logique Et Analyse 60 (239):301-316.
    There is widespread agreement that while on a Dummettian theory of meaning the justified logic is intuitionist, as its constants are governed by harmonious rules of inference, the situation is reversed on Huw Price's bilateralist account, where meanings are specified in terms of primitive speech acts assertion and denial. In bilateral logics, the rules for classical negation are in harmony. However, as it is possible to construct an intuitionist bilateral logic with harmonious rules, there is no formal argument (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  72
    Definite Descriptions in Intuitionist Positive Free Logic.Nils Kürbis - 2020 - Logic and Logical Philosophy 30:1.
    This paper presents rules of inference for a binary quantifier I for the formalisation of sentences containing definite descriptions within intuitionist positive free logic. I binds one variable and forms a formula from two formulas. Ix[F, G] means ‘The F is G’. The system is shown to have desirable proof-theoretic properties: it is proved that deductions in it can be brought into normal form. The discussion is rounded up by comparisons between the approach to the formalisation of definite descriptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  86
    The ILLTP Library for Intuitionistic Linear Logic.Carlos Olarte, Valeria Correa Vaz De Paiva, Elaine Pimentel & Giselle Reis - manuscript
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's (...) theorems in the traditional monograph "Introduction to Metamathematics". We analyze four different translations of intuitionistic logic into linear logic and compare their proofs using a linear logic based prover with focusing. In order to enhance the set of problems in our library, we apply the three provability-preserving translations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus enlarging our collection of problems. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic.Matthias Baaz & Richard Zach - 2000 - In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  82
    Proof Theory of Finite-Valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  23. Conceptions of Truth in Intuitionism.Panu Raatikainen - 2004 - History and Philosophy of Logic 25 (2):131--45.
    Intuitionism’s disagreement with classical logic is standardly based on its specific understanding of truth. But different intuitionists have actually explicated the notion of truth in fundamentally different ways. These are considered systematically and separately, and evaluated critically. It is argued that each account faces difficult problems. They all either have implausible consequences or are viciously circular.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  24.  20
    Intuitionist Reasoning in the Tri-Unitarian Theology of Nicholas of Cues (1401-1464).Antonino Drago - 2019 - Journal of Applied Logic 6 (6):1143-1186.
    The main subject of Cusanus’ investigations was the name of God. He claimed to have achieved the best possible one, Not-Other. Since Cusanus stressed that these two words do not mean the corresponding affirmative word, i.e. the same, they represent the failure of the double negation law and there￾fore belong to non-classical, and above all, intuitionist logic. Some of his books implicitly applied intuitionist reasoning and the corresponding organization of a theory which is governed by intuitionist logic. A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. The Logic of Partitions: Introduction to the Dual of the Logic of Subsets: The Logic of Partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  26. Against Reflective Equilibrium for Logical Theorizing.Jack Woods - 2019 - Australasian Journal of Logic 16 (7):319.
    I distinguish two ways of developing anti-exceptionalist approaches to logical revision. The first emphasizes comparing the theoretical virtuousness of developed bodies of logical theories, such as classical and intuitionistic logic. I'll call this whole theory comparison. The second attempts local repairs to problematic bits of our logical theories, such as dropping excluded middle to deal with intuitions about vagueness. I'll call this the piecemeal approach. I then briefly discuss a problem I've developed elsewhere for comparisons of logical theories. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Failures of Categoricity and Compositionality for Intuitionistic Disjunction.Jack Woods - 2012 - Thought: A Journal of Philosophy 1 (4):281-291.
    I show that the model-theoretic meaning that can be read off the natural deduction rules for disjunction fails to have certain desirable properties. I use this result to argue against a modest form of inferentialism which uses natural deduction rules to fix model-theoretic truth-conditions for logical connectives.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. The Craig Interpolation Theorem for Prepositional Logics with Strong Negation.Valentin Goranko - 1985 - Studia Logica 44 (3):291 - 317.
    This paper deals with, prepositional calculi with strong negation (N-logics) in which the Craig interpolation theorem holds. N-logics are defined to be axiomatic strengthenings of the intuitionistic calculus enriched with a unary connective called strong negation. There exists continuum of N-logics, but the Craig interpolation theorem holds only in 14 of them.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  29. The Philosophy of Alternative Logics.Andrew Aberdein & Stephen Read - 2009 - In Leila Haaparanta (ed.), The Development of Modern Logic. Oxford University Press. pp. 613-723.
    This chapter focuses on alternative logics. It discusses a hierarchy of logical reform. It presents case studies that illustrate particular aspects of the logical revisionism discussed in the chapter. The first case study is of intuitionistic logic. The second case study turns to quantum logic, a system proposed on empirical grounds as a resolution of the antinomies of quantum mechanics. The third case study is concerned with systems of relevance logic, which have been the subject of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  30. Co-Constructive Logic for Proofs and Refutations.James Trafford - 2014 - Studia Humana 3 (4):22-40.
    This paper considers logics which are formally dual to intuitionistic logic in order to investigate a co-constructive logic for proofs and refutations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely-held assumptions, to a justification of bivalence. For example, we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Topics in Philosophical Logic.Jon Erling Litland - 2012 - Dissertation, Harvard
    In “Proof-Theoretic Justification of Logic”, building on work by Dummett and Prawitz, I show how to construct use-based meaning-theories for the logical constants. The assertability-conditional meaning-theory takes the meaning of the logical constants to be given by their introduction rules; the consequence-conditional meaning-theory takes the meaning of the logical constants to be given by their elimination rules. I then consider the question: given a set of introduction rules \, what are the strongest elimination rules that are validated by an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. The Development of Mathematical Logic From Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The Development of Modern Logic. Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  33. A Resource-Sensitive Logic of Agency.Daniele Porello & Nicolas Troquard - 2014 - In Ios Press (ed.), Proceedings of the 21st European Conference on Artificial Intelligence (ECAI'14), Prague, Czech Republic. 2014. pp. 723-728.
    We study a fragment of Intuitionistic Linear Logic combined with non-normal modal operators. Focusing on the minimal modal logic, we provide a Gentzen-style sequent calculus as well as a semantics in terms of Kripke resource models. We show that the proof theory is sound and complete with respect to the class of minimal Kripke resource models. We also show that the sequent calculus allows cut elimination. We put the logical framework to use by instantiating it as a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Boxes and Diamonds. An Open Introduction to Modal Logic.Richard Zach - 2019 - Open Logic Project.
    A textbook for modal and other intensional logics based on the Open Logic Project. It covers normal modal logics, relational semantics, axiomatic and tableaux proof systems, intuitionistic logic, and counterfactual conditionals.
    Download  
     
    Export citation  
     
    Bookmark  
  35.  12
    Towards a New Philosophical Perspective on Hermann Weyl’s Turn to Intuitionism.Kati Kish Bar-On - forthcoming - Science in Context.
    The paper explores Hermann Weyl’s turn to intuitionism through a philosophical prism of normative framework transitions. It focuses on three central themes that occupied Weyl’s thought: the notion of the continuum, logical existence, and the necessity of intuitionism, constructivism, and formalism to adequately address the foundational crisis of mathematics. The analysis of these themes reveals Weyl’s continuous endeavor to deal with such fundamental problems and suggests a view that provides a different perspective concerning Weyl’s wavering foundational positions. Building on a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36.  22
    Anderson And Belnap's Minimal Positive Logic With Minimal Negation.J. Mendez, F. Salto & G. Robles - 2002 - Reports on Mathematical Logic 36:117-130.
    Our question is: can we embed minimal negation in implicative logics weaker than I→? Previous results show how to define minimal negation in the positive fragment of the logic of relevance R and in contractionless intuitionistic logic. Is it possible to endow weaker positive logics with minimal negation? This paper prooves that minimal negation can be embedded in even such a weak system as Anderson and Belnap’s minimal positive logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Translations Between Logical Systems: A Manifesto.Walter A. Carnielli & Itala Ml D'Ottaviano - 1997 - Logique Et Analyse 157:67-81.
    The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38.  15
    Decidable Formulas Of Intuitionistic Primitive Recursive Arithmetic.Saeed Salehi - 2002 - Reports on Mathematical Logic 36 (1):55-61.
    By formalizing some classical facts about provably total functions of intuitionistic primitive recursive arithmetic (iPRA), we prove that the set of decidable formulas of iPRA and of iΣ1+ (intuitionistic Σ1-induction in the language of PRA) coincides with the set of its provably ∆1-formulas and coincides with the set of its provably atomic formulas. By the same methods, we shall give another proof of a theorem of Marković and De Jongh: the decidable formulas of HA are its provably ∆1-formulas.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. That There Might Be Vague Objects (So Far as Concerns Logic).Richard Heck - 1998 - The Monist 81 (1):277-99.
    Gareth Evans has argued that the existence of vague objects is logically precluded: The assumption that it is indeterminate whether some object a is identical to some object b leads to contradiction. I argue in reply that, although this is true—I thus defend Evans's argument, as he presents it—the existence of vague objects is not thereby precluded. An 'Indefinitist' need only hold that it is not logically required that every identity statement must have a determinate truth-value, not that some such (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  40. Some Strongly Undecidable Natural Arithmetical Problems, with an Application to Intuitionistic Theories.Panu Raatikainen - 2003 - Journal of Symbolic Logic 68 (1):262-266.
    A natural problem from elementary arithmetic which is so strongly undecidable that it is not even Trial and Error decidable (in other words, not decidable in the limit) is presented. As a corollary, a natural, elementary arithmetical property which makes a difference between intuitionistic and classical theories is isolated.
    Download  
     
    Export citation  
     
    Bookmark  
  41. Logic of Probability and Conjecture.Harry Crane - unknown
    I introduce a formalization of probability which takes the concept of 'evidence' as primitive. In parallel to the intuitionistic conception of truth, in which 'proof' is primitive and an assertion A is judged to be true just in case there is a proof witnessing it, here 'evidence' is primitive and A is judged to be probable just in case there is evidence supporting it. I formalize this outlook by representing propositions as types in Martin-Lof type theory (MLTT) and defining (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Non-Normal Modalities in Variants of Linear Logic.D. Porello & N. Troquard - 2015 - Journal of Applied Non-Classical Logics 25 (3):229-255.
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of linear logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic linear logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  26
    Kripke Semantics for Fuzzy Logics.Saeed Salehi - 2018 - Soft Computing 22 (3):839–844.
    Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example, intuitionistic logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the basic logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models could provide a semantics for fuzzy logics. For each axiom of the basic fuzzy logic, necessary and sufficient conditions are sought for Kripke frames/models which satisfy them. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  14
    Normalisation and Subformula Property for a System of Classical Logic with Tarski’s Rule.Nils Kürbis - forthcoming - Archive for Mathematical Logic:1-25.
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Incompleteness of a First-Order Gödel Logic and Some Temporal Logics of Programs.Matthias Baaz, Alexander Leitsch & Richard Zach - 1996 - In Hans Kleine Büning (ed.), Computer Science Logic. CSL 1995. Selected Papers. Berlin: Springer. pp. 1--15.
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46.  85
    Judgement Aggregation in Non-Classical Logics.Daniele Porello - 2017 - Journal of Applied Non-Classical Logics 27 (1-2):106-139.
    This work contributes to the theory of judgement aggregation by discussing a number of significant non-classical logics. After adapting the standard framework of judgement aggregation to cope with non-classical logics, we discuss in particular results for the case of Intuitionistic Logic, the Lambek calculus, Linear Logic and Relevant Logics. The motivation for studying judgement aggregation in non-classical logics is that they offer a number of modelling choices to represent agents’ reasoning in aggregation problems. By studying judgement aggregation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Effective Finite-Valued Approximations of General Propositional Logics.Matthias Baaz & Richard Zach - 2008 - In Arnon Avron, Nachum Dershowitz & Alexander Rabinovich (eds.), Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. Berlin: Springer. pp. 107–129.
    Propositional logics in general, considered as a set of sentences, can be undecidable even if they have “nice” representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valued logics are computationally relatively simple—at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional logics represented in various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Three Dogmas of First-Order Logic and Some Evidence-Based Consequences for Constructive Mathematics of Differentiating Between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The Boundary Stones of Thought: An Essay in the Philosophy of Logic, by Ian Rumfitt. [REVIEW]Peter Fritz - 2018 - Mind 127 (505):265-276.
    In his book The Boundary Stones of Thought, Ian Rumfitt considers five arguments in favour of intuitionistic logic over classical logic. Two of these arguments are based on reflections concerning the meaning of statements in general, due to Michael Dummett and John McDowell. The remaining three are more specific, concerning statements about the infinite and the infinitesimal, statements involving vague terms, and statements about sets.Rumfitt is sympathetic to the premisses of many of these arguments, and takes some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Meta-Ethics and Analysis of Language From Wittgenstein to Deontic Logic Systems.Maurilio Lovatti - 2007 - Analysis and Metaphysics 6:120-135.
    In this paper, partly historical and partly theoretical, after having shortly outlined the development of the meta-ethics in the 1900?s starting from the Tractatus of Wittgenstein, I argue it is possible to sustain that emotivism and intuitionism are unsatisfactory ethical conceptions, while on the contrary, reason (intended in a logical-deductive sense) plays an effective role both in ethical discussions and in choices. There are some characteristics of the ethical language (prescriptivity, universalizability and predominance) that cannot be eluded (pain the non (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000