Abstract
The question as to what makes a perfect Aristotelian syllogism a perfect one has long been discussed by Aristotelian scholars. G. Patzig was the first to point the way to a correct answer: it is the evidence of the logical necessity that is the special feature of perfect syllogisms. Patzig moreover claimed that the evidence of a perfect syllogism can be seen for Barbara in the transitivity of the a-relation. However, this explanation would give Barbara a different status over the other three first figure syllogisms. I argue that, taking into account the role of the being-contained-as-in-a-whole formulation, transitivity can be seen to be present in all four first figure syllogisms. Using this wording will put the negation sign with the predicate, similar to the notation in modern predicate calculus.