A model-theoretic analysis of Fidel-structures for mbC

In Can Baskent and Thomas Ferguson (ed.), Graham Priest on Dialetheism and Paraconsistency. Springer. pp. 189-216 (2020)
Download Edit this record How to cite View on PhilPapers
Abstract
In this paper the class of Fidel-structures for the paraconsistent logic mbC is studied from the point of view of Model Theory and Category Theory. The basic point is that Fidel-structures for mbC (or mbC-structures) can be seen as first-order structures over the signature of Boolean algebras expanded by two binary predicate symbols N (for negation) and O (for the consistency connective) satisfying certain Horn sentences. This perspective allows us to consider notions and results from Model Theory in order to analyze the class of mbC-structures. Thus, substructures, union of chains, direct products, direct limits, congruences and quotient structures can be analyzed under this perspective. In particular, a Birkhoff-like representation theorem for mbC-structures as subdirect poducts in terms of subdirectly irreducible mbC-structures is obtained by adapting a general result for first-order structures due to Caicedo. Moreover, a characterization of all the subdirectly irreducible mbC-structures is also given. An alternative decomposition theorem is obtained by using the notions of weak substructure and weak isomorphism considered by Fidel for Cn-structures.
PhilPapers/Archive ID
ECOAMA
Upload history
Archival date: 2018-04-07
View other versions
Added to PP index
2018-04-07

Total views
117 ( #32,392 of 52,672 )

Recent downloads (6 months)
44 ( #13,921 of 52,672 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.