View topic on PhilPapers for more information
Related categories

53 found
Order:
More results on PhilPapers
1 — 50 / 53
  1. Algunos tópicos de Lógica matemática y los Fundamentos de la matemática.Franklin Galindo - manuscript
    En este trabajo matemático-filosófico se estudian cuatro tópicos de la Lógica matemática: El método de construcción de modelos llamado Ultraproductos, la Propiedad de Interpolación de Craig, las Álgebras booleanas y los Órdenes parciales separativos. El objetivo principal del mismo es analizar la importancia que tienen dichos tópicos para el estudio de los fundamentos de la matemática, desde el punto de vista del platonismo matemático. Para cumplir con tal objetivo se trabajará en el ámbito de la Matemática, de la Metamatemática y (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  2. Nota: ¿CUÁL ES EL CARDINAL DEL CONJUNTO DE LOS NÚMEROS REALES?Franklin Galindo - manuscript
    ¿Qué ha pasado con el problema del cardinal del continuo después de Gödel (1938) y Cohen (1964)? Intentos de responder esta pregunta pueden encontrarse en los artículos de José Alfredo Amor (1946-2011), "El Problema del continuo después de Cohen (1964-2004)", de Carlos Di Prisco , "Are we closer to a solution of the continuum problem", y de Joan Bagaria, "Natural axioms of set and the continuum problem" , que se pueden encontrar en la biblioteca digital de mi blog de Lógica (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. A Methodological Note on Proving Agreement Between the Elementary Process Theory and Modern Interaction Theories.Cabbolet Marcoen - manuscript
    The Elementary Process Theory (EPT) is a collection of seven elementary process-physical principles that describe the individual processes by which interactions have to take place for repulsive gravity to exist. One of the two main problems of the EPT is that there is no proof that the four fundamental interactions (gravitational, electromagnetic, strong, and weak) as we know them can take place in the elementary processes described by the EPT. This paper sets forth the method by which it can be (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. A Statistical Learning Approach to a Problem of Induction.Kino Zhao - manuscript
    At its strongest, Hume's problem of induction denies the existence of any well justified assumptionless inductive inference rule. At the weakest, it challenges our ability to articulate and apply good inductive inference rules. This paper examines an analysis that is closer to the latter camp. It reviews one answer to this problem drawn from the VC theorem in statistical learning theory and argues for its inadequacy. In particular, I show that it cannot be computed, in general, whether we are in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Syntactic Characterizations of First-Order Structures in Mathematical Fuzzy Logic.Guillermo Badia, Pilar Dellunde, Vicent Costa & Carles Noguera - forthcoming - Soft Computing.
    This paper is a contribution to graded model theory, in the context of mathematical fuzzy logic. We study characterizations of classes of graded structures in terms of the syntactic form of their first-order axiomatization. We focus on classes given by universal and universal-existential sentences. In particular, we prove two amalgamation results using the technique of diagrams in the setting of structures valued on a finite MTL-algebra, from which analogues of the Łoś–Tarski and the Chang–Łoś–Suszko preservation theorems follow.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. El Axioma de elección en el quehacer matemático contemporáneo.Franklin Galindo & Randy Alzate - 2022 - Aitías 2 (3):49-126.
    Para matemáticos interesados en problemas de fundamentos, lógico-matemáticos y filósofos de la matemática, el axioma de elección es centro obligado de reflexión, pues ha sido considerado esencial en el debate dentro de las posiciones consideradas clásicas en filosofía de la matemática (intuicionismo, formalismo, logicismo, platonismo), pero también ha tenido una presencia fundamental para el desarrollo de la matemática y metamatemática contemporánea. Desde una posición que privilegia el quehacer matemático, nos proponemos mostrar los aportes que ha tenido el axioma en varias (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. Théorie des modèles, de la simulation et représentation scientifique chez Mario Bunge.Jean Robillard - 2022 - Mεtascience: Discours Général Scientifique 2:45-73.
    On entend généralement par « théorie des modèles » autant la métamathématique (ou sémantique formelle) que la sémantique des modèles des sciences non formelles. Cet article a pour objet la théorie des modèles scientifiques que Mario Bunge a développée dans Method, Models and Matter (1973). J’y analyse l’intégration théorique qu’opère Bunge des sciences formelles et des sciences expérimentales ou observationnelles, laquelle prend appui sur sa philosophie des sciences. Je la compare sommairement à la théorie des modèles de Gilles-Gaston Granger dans (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  8. Extension and Self-Connection.Ben Blumson & Manikaran Singh - 2021 - Logic and Logical Philosophy 30 (3):435-59.
    If two self-connected individuals are connected, it follows in classical extensional mereotopology that the sum of those individuals is self-connected too. Since mainland Europe and mainland Asia, for example, are both self-connected and connected to each other, mainland Eurasia is also self-connected. In contrast, in non-extensional mereotopologies, two individuals may have more than one sum, in which case it does not follow from their being self-connected and connected that the sum of those individuals is self-connected too. Nevertheless, one would still (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. TRES TEOREMAS SOBRE CARDINALES MEDIBLES.Franklin Galindo - 2021 - Mixba'al. Revista Metropolitana de Matemáticas 12 (1):15-31.
    El estudio de los "cardinales grandes" es uno de los principales temas de investigación de la teoría de conjuntos y de la teoría de modelos que ha contribuido con el desarrollo de dichas disciplinas. Existe una gran variedad de tales cardinales, por ejemplo cardinales inaccesibles, débilmente compactos, Ramsey, medibles, supercompactos, etc. Tres valiosos teoremas clásicos sobre cardinales medibles son los siguientes: (i) compacidad débil, (ii) Si κ es un cardinal medible, entonces κ es un cardinal inaccesible y existen κ cardinales (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. On Classical Set-Compatibility.Luis Felipe Bartolo Alegre - 2020 - El Jardín de Senderos Que Se Bifurcan y Confluyen: Filosofía, Lógica y Matemáticas.
    In this paper, I generalise the logical concept of compatibility into a broader set-theoretical one. The basic idea is that two sets are incompatible if they produce at least one pair of opposite objects under some operation. I formalise opposition as an operation ′ ∶ E → E, where E is the set of opposable elements of our universe U, and I propose some models. From this, I define a relation ℘U × ℘U × ℘U^℘U, which has (mutual) logical compatibility (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. A Model-Theoretic Analysis of Fidel-Structures for mbC.Marcelo E. Coniglio - 2020 - In Can Baskent and Thomas Ferguson (ed.), Graham Priest on Dialetheism and Paraconsistency. Springer. pp. 189-216.
    In this paper the class of Fidel-structures for the paraconsistent logic mbC is studied from the point of view of Model Theory and Category Theory. The basic point is that Fidel-structures for mbC (or mbC-structures) can be seen as first-order structures over the signature of Boolean algebras expanded by two binary predicate symbols N (for negation) and O (for the consistency connective) satisfying certain Horn sentences. This perspective allows us to consider notions and results from Model Theory in order to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Tópicos de Ultrafiltros.Franklin Galindo - 2020 - Divulgaciones Matematicas 21 (1-2):54-77.
    Ultrafilters are very important mathematical objects in mathematical research [6, 22, 23]. There are a wide variety of classical theorems in various branches of mathematics where ultrafilters are applied in their proof, and other classical theorems that deal directly with ultrafilters. The objective of this article is to contribute (in a divulgative way) to ultrafilter research by describing the demonstrations of some such theorems related (uniquely or in combination) to topology, Measure Theory, algebra, combinatorial infinite, set theory and first-order logic, (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  13. Un teorema sobre el Modelo de Solovay.Franklin Galindo - 2020 - Divulgaciones Matematicas 21 (1-2): 42–46.
    The objective of this article is to present an original proof of the following theorem: Thereis a generic extension of the Solovay’s model L(R) where there is a linear order of P(N)/fin that extends to the partial order (P(N)/f in), ≤*). Linear orders of P(N)/fin are important because, among other reasons, they allow constructing non-measurable sets, moreover they are applied in Ramsey's Theory .
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  14. Starting Rational Reconstruction of Spinoza's Metaphysics by "a Formal Analogy to Elements of 'de Deo' (E1)".Friedrich Wilhelm Grafe - 2020 - Archive.Org.
    We aim to compile some means for a rational reconstruction of a named part of the start-over of Baruch (Benedictus) de Spinoza's metaphysics in 'de deo' (which is 'pars prima' of the 'ethica, ordine geometrico demonstrata' ) in terms of 1st order model theory. In so far, as our approach will be judged successful, it may, besides providing some help in understanding Spinoza, also contribute to the discussion of some or other philosophical evergreen, e.g. 'ontological commitment'. For this text we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Understanding What We Ought and Shall Do: A Hyperstate Semantics for Descriptive, Prescriptive, and Intentional Sentences.Preston Stovall - 2020 - In Ladislav Koreň, Hans Bernhard Schmid, Preston Stovall & Leo Townsend (eds.), Groups, Norms and Practices: Essays on Inferentialism and Collective Intentionality. Cham: Springer. pp. 215-238.
    This essay is part of a larger project aimed at making sense of rational thought and agency as part of the natural world. It provides a semantic framework for thinking about the contents of: 1) descriptive thoughts and sentences having a representational or mind-to-world direction of fit, and which manifest our capacity for theoretical rationality; and 2) prescriptive and intentional sentences having an expressive or world-to-mind direction of fit, and which manifest our capacity for practical rationality. I use a modified (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Substitution Structures.Andrew Bacon - 2019 - Journal of Philosophical Logic 48 (6):1017-1075.
    An increasing amount of twenty-first century metaphysics is couched in explicitly hyperintensional terms. A prerequisite of hyperintensional metaphysics is that reality itself be hyperintensional: at the metaphysical level, propositions, properties, operators, and other elements of the type hierarchy, must be more fine-grained than functions from possible worlds to extensions. In this paper I develop, in the setting of type theory, a general framework for reasoning about the granularity of propositions and properties. The theory takes as primitive the notion of a (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   12 citations  
  17. Algunas notas introductorias sobre la Teoría de Conjuntos.Franklin Galindo - 2019 - Apuntes Filosóficos: Revista Semestral de la Escuela de Filosofía 18 (55):201-232.
    The objective of this document is to present three introductory notes on set theory: The first note presents an overview of this discipline from its origins to the present, in the second note some considerations are made about the evaluation of reasoning applying the first-order Logic and Löwenheim's theorems, Church Indecidibility, Completeness and Incompleteness of Gödel, it is known that the axiomatic theories of most commonly used sets are written in a specific first-order language, that is, they are developed within (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  18. A Note on Carnap’s Result and the Connectives.Tristan Haze - 2019 - Axiomathes 29 (3):285-288.
    Carnap’s result about classical proof-theories not ruling out non-normal valuations of propositional logic formulae has seen renewed philosophical interest in recent years. In this note I contribute some considerations which may be helpful in its philosophical assessment. I suggest a vantage point from which to see the way in which classical proof-theories do, at least to a considerable extent, encode the meanings of the connectives (not by determining a range of admissible valuations, but in their own way), and I demonstrate (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Laws of Thought and Laws of Logic After Kant.Lydia Patton - 2018 - In Sandra Lapointe (ed.), Logic from Kant to Russell. New York: Routledge. pp. 123-137.
    George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of thought acquire (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Paraconsistent Logic as Model Building.Ricardo Sousa Silvestre - 2018 - South American Journal of Logic 1 (4):195-217.
    The terms “model” and “model-building” have been used to characterize the field of formal philosophy, to evaluate philosophy’s and philosophical logic’s progress and to define philosophical logic itself. A model is an idealization, in the sense of being a deliberate simplification of something relatively complex in which several important aspects are left aside, but also in the sense of being a view too perfect or excellent, not found in reality, of this thing. Paraconsistent logic is a branch of philosophical logic. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. The Lvov-Warsaw School. Past and Present.Urszula Wybraniec-Skardowska & Ángel Garrido (eds.) - 2018 - Cham, Switzerland: Springer- Birkhauser,.
    This is a collection of new investigations and discoveries on the history of a great tradition, the Lvov-Warsaw School of logic , philosophy and mathematics, by the best specialists from all over the world. The papers range from historical considerations to new philosophical, logical and mathematical developments of this impressive School, including applications to Computer Science, Mathematics, Metalogic, Scientific and Analytic Philosophy, Theory of Models and Linguistics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Dos Teoremas de interpolación.Franklin Galindo - 2016 - Divulgaciones Matematicas 17 ( 2):15-42.
    En este artículo se presentan dos demostraciones del teorema de interpolación: Una para la lógica proposicional y otra para la lógica de primer orden. Ambas se realizan en el contexto de la teoría de modelos. El teorema de interpolación afirma que si A y B son fórmulas, donde A no es una contradicción, B no es válida, y B es una consecuencia lógica de A, entonces existe una fórmula C que esta escrita en el lenguaje común al de A y (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  23. Una presentación de la demostración directa del teorema de compacidad de la lógica de primer orden que usa el método de ultraproductos.Franklin Galindo - 2016 - UnaInvestigación 1 (1):1-25.
    El objetivo principal de este artículo es presentar la demostración directa del Teorema de compacidad de la Lógica de primer orden (Gama tiene un modelo si y sólo si cada subconjunto finito de Gama tiene un modelo) que se realiza utilizando el Método de construcción de modelos llamado "Ultraproductos" que, a su vez, usa "Ultrafiltros". Actualmente es más común demostrar el Teorema de compacidad como un corolario del Teorema de completitud de Gödel y usar el método de reducción al absurdo (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  24. The Model-Theoretic Argument: From Skepticism to a New Understanding.Gila Sher - 2016 - In Sanford Goldberg (ed.), The Brain in a Vat. Cambridge, Britain: Cambridge University Press. pp. 208-225.
    In this paper I investigate Putnam’s model-theoretic argument from a transcendent standpoint, in spite of Putnam’s well-known objections to such a standpoint. This transcendence, however, requires ascent to something more like a Tarskian meta-level than what Putnam regards as a “God’s eye view”. Still, it is methodologically quite powerful, leading to a significant increase in our investigative tools. The result is a shift from Putnam’s skeptical conclusion to a new understanding of realism, truth, correspondence, knowledge, and theories, or certain aspects (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Dos Tópicos de Lógica Matemática y sus Fundamentos.Franklin Galindo - 2014 - Episteme NS: Revista Del Instituto de Filosofía de la Universidad Central de Venezuela 34 (1):41-66..
    El objetivo de este artículo es presentar dos tópicos de Lógica matemática y sus fundamentos: El primer tópico es una actualización de la demostración de Alonzo Church del Teorema de completitud de Gödel para la Lógica de primer orden, la cual aparece en su texto "Introduction to Mathematical Logic" (1956) y usa el procedimientos efectivos de Forma normal prenexa y Forma normal de Skolem; y el segundo tópico es una demostración de que la propiedad de partición (tipo Ramsey) del espacio (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  26. Constructing Formal Semantics From an Ontological Perspective. The Case of Second-Order Logics.Thibaut Giraud - 2014 - Synthese 191 (10):2115-2145.
    In a first part, I defend that formal semantics can be used as a guide to ontological commitment. Thus, if one endorses an ontological view \(O\) and wants to interpret a formal language \(L\) , a thorough understanding of the relation between semantics and ontology will help us to construct a semantics for \(L\) in such a way that its ontological commitment will be in perfect accordance with \(O\) . Basically, that is what I call constructing formal semantics from an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. On Pathological Truths.Damian Szmuc & Lucas Rosenblatt - 2014 - Review of Symbolic Logic 7 (4):601-617.
    In Kripke’s classic paper on truth it is argued that by adding a new semantic category different from truth and falsity it is possible to have a language with its own truth predicate. A substantial problem with this approach is that it lacks the expressive resources to characterize those sentences which fall under the new category. The main goal of this paper is to offer a refinement of Kripke’s approach in which this difficulty does not arise. We tackle this characterization (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  28. The Metaphysical Interpretation of Logical Truth.Tuomas Tahko - 2014 - In Penelope Rush (ed.), The Metaphysics of Logic: Logical Realism, Logical Anti-Realism and All Things In Between. Cambridge: Cambridge University Press. pp. 233-248.
    The starting point of this paper concerns the apparent difference between what we might call absolute truth and truth in a model, following Donald Davidson. The notion of absolute truth is the one familiar from Tarski’s T-schema: ‘Snow is white’ is true if and only if snow is white. Instead of being a property of sentences as absolute truth appears to be, truth in a model, that is relative truth, is evaluated in terms of the relation between sentences and models. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  29. Non-Classical Metatheory for Non-Classical Logics.Andrew Bacon - 2013 - Journal of Philosophical Logic 42 (2):335-355.
    A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of this paper is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   15 citations  
  30. Non-Normal Worlds and Representation.Francesco Berto - 2012 - In Michal Peliš & Vít Punčochář (eds.), The Logica Yearbook. College Publications.
    World semantics for relevant logics include so-called non-normal or impossible worlds providing model-theoretic counterexamples to such irrelevant entailments as (A ∧ ¬A) → B, A → (B∨¬B), or A → (B → B). Some well-known views interpret non-normal worlds as information states. If so, they can plausibly model our ability of conceiving or representing logical impossibilities. The phenomenon is explored by combining a formal setting with philosophical discussion. I take Priest’s basic relevant logic N4 and extend it, on the syntactic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. All Things Must Pass Away.Joshua Spencer - 2012 - Oxford Studies in Metaphysics 7:67.
    Are there any things that are such that any things whatsoever are among them. I argue that there are not. My thesis follows from these three premises: (1) There are two or more things; (2) for any things, there is a unique thing that corresponds to those things; (3) for any two or more things, there are fewer of them than there are pluralities of them.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  32. Model-Checking CTL* Over Flat Presburger Counter Systems.Stéphane Demri, Alain Finkel, Valentin Goranko & Govert van Drimmelen - 2010 - Journal of Applied Non-Classical Logics 20 (4):313-344.
    This paper concerns model-checking of fragments and extensions of CTL* on infinite-state Presburger counter systems, where the states are vectors of integers and the transitions are determined by means of relations definable within Presburger arithmetic. In general, reachability properties of counter systems are undecidable, but we have identified a natural class of admissible counter systems (ACS) for which we show that the quantification over paths in CTL* can be simulated by quantification over tuples of natural numbers, eventually allowing translation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Perfect Set Properties in Models of ZF.Franklin Galindo & Carlos Di Prisco - 2010 - Fundamenta Mathematicae 208 (208):249-262.
    We study several perfect set properties of the Baire space which follow from the Ramsey property ω→(ω) ω . In particular we present some independence results which complete the picture of how these perfect set properties relate to each other.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Constructibilidad relativizada y el Axioma de elección.Franklin Galindo & Carlos Di Prisco - 2010 - Mixba'al. Revista Metropolitana de Matemáticas 1 (1):23-40.
    El objetivo de este trabajo es presentar en un solo cuerpo tres maneras de relativizar (o generalizar) el concepto de conjunto constructible de Gödel que no suelen aparecer juntas en la literatura especializada y que son importantes en la Teoría de Conjuntos, por ejemplo para resolver problemas de consistencia o independencia. Presentamos algunos modelos resultantes de las diferentes formas de relativizar el concepto de constructibilidad, sus propiedades básicas y algunas formas débiles del Axioma de Elección válidas o no válidas en (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  35. Theories with the Independence Property, Studia Logica 2010 95:379-405.Mlj van de Vel - 2010 - Studia Logica 95 (3):379-405.
    A first-order theory T has the Independence Property provided deduction of a statement of type (quantifiers) (P -> (P1 or P2 or .. or Pn)) in T implies that (quantifiers) (P -> Pi) can be deduced in T for some i, 1 <= i <= n). Variants of this property have been noticed for some time in logic programming and in linear programming. We show that a first-order theory has the Independence Property for the class of basic formulas provided it (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  36. Algorithmic Correspondence and Completeness in Modal Logic. IV. Semantic Extensions of SQEMA.Willem Conradie & Valentin Goranko - 2008 - Journal of Applied Non-Classical Logics 18 (2-3):175-211.
    In a previous work we introduced the algorithm \SQEMA\ for computing first-order equivalents and proving canonicity of modal formulae, and thus established a very general correspondence and canonical completeness result. \SQEMA\ is based on transformation rules, the most important of which employs a modal version of a result by Ackermann that enables elimination of an existentially quantified predicate variable in a formula, provided a certain negative polarity condition on that variable is satisfied. In this paper we develop several extensions of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. GENERAL SYSTEM THEORY, LIKEQUANTUM SEMANTICS AND FUZZY SETS.Ignazio Licata - 2006 - In G. Minati (ed.), Systemics of Emergence. Research and Developement. Springer.
    It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics. In conclusion we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. Possible M-Diagrams of Models of Arithmetic.Andrew Arana - 2005 - In Stephen Simpson (ed.), Reverse Mathematics 2001.
    In this paper I begin by extending two results of Solovay; the first characterizes the possible Turing degrees of models of True Arithmetic (TA), the complete first-order theory of the standard model of PA, while the second characterizes the possible Turing degrees of arbitrary completions of P. I extend these two results to characterize the possible Turing degrees of m-diagrams of models of TA and of arbitrary complete extensions of PA. I next give a construction showing that the conditions Solovay (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  39. Axiomatización de la Silogística Extendida.Franklin Galindo - 2001 - Episteme NS: Revista Del Instituto de Filosofía de la Universidad Central de Venezuela 21 ( 1):15-29..
    El objetivo principal de este trabajo es presentar el sistema lógico que resulta de extender, de una manera natural, a la Silogística con la Lógica proposicional, y demostrar que tal extensión se puede caracterizar como un sistema axiomático. Los axiomas que se utilizan son los de Jan Łukasiewicz , y la completitud de tal sistema de axiomas se prueba utilizando un método análogo al método del conjunto maximal consistente con testigos de Henkin, siguiendo algunas ideas que utiliza John Corcoran para (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  40. Information-Theoretic Logic and Transformation-Theoretic Logic,.John Corcoran - 1999 - In R. A. M. M. (ed.), Fragments in Science,. World Scientific Publishing Company,. pp. 25-35.
    Information-theoretic approaches to formal logic analyze the "common intuitive" concepts of implication, consequence, and validity in terms of information content of propositions and sets of propositions: one given proposition implies a second if the former contains all of the information contained by the latter; one given proposition is a consequence of a second if the latter contains all of the information contained by the former; an argument is valid if the conclusion contains no information beyond that of the premise-set. This (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Dispensing with the Generic Sense of" Art'.Raymond Kolcaba - 1989 - Southwest Philosophical Studies 11.
    The question of whether the term ”art,” or art as an array of objects, can be defined depends upon the sense of “art” and its extension. The generic sense of “art” is its broadest meaning having its widest extension. I argue that the term is very much like the generic term “science.” Uses of both terms don’t depend upon rigorous definition. Rather, the terms organize an enormous number of varied and sometimes incompatible sub-categories. Most informative topics in art and science (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  42. Unexpected Models.Mihail Radu Solcan - 1986 - Revue Roumaine de Philosophie 30 (3-4):211-213.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  43. Numerals and Quantifiers in X-Bar Syntax and Their Semantic Interpretation.Henk J. Verkuyl - 1981 - In Jeroen A. G. Groenendijk, Theo M. V. Janssen & Martin B. Stokhof (eds.), Formal Methods in the Study of Language Volume 2. U of Amsterdam. pp. 567-599.
    The first aim of the paper is to show that under certain conditions generative syntax can be made suitable for Montague semantics, based on his type logic. One of the conditions is to make branching in the so-called X-bar syntax strictly binary, This makes it possible to provide an adequate semantics for Noun Phrases by taking them as referring to sets of collections of sets of entities ( type <ett,t>) rather than to sets of sets of entities (ett).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  44. Categoricity.John Corcoran - 1980 - History and Philosophy of Logic 1 (1):187-207.
    After a short preface, the first of the three sections of this paper is devoted to historical and philosophic aspects of categoricity. The second section is a self-contained exposition, including detailed definitions, of a proof that every mathematical system whose domain is the closure of its set of distinguished individuals under its distinguished functions is categorically characterized by its induction principle together with its true atoms (atomic sentences and negations of atomic sentences). The third section deals with applications especially those (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   35 citations  
  45. Set Theory.Charles C. Pinter - 1976 - Journal of Symbolic Logic 41 (2):548-549.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Interpretive Rules and the Description of the Aspects.H. J. Verkuyl - 1976 - Foundations of Language 14 (4):471-503.
    This paper aims at showing that the generative-semantic framework is not essential to the proposal in H.J. Verkuyl On the Compositional Nature of the Aspects Reidel:Dordrecht 1972. Compositionality can be shown to be neutral as to the then-difference between generative-semantic and the interpretive-semantic branch of transformational grammar.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. A Mathematical Model of Aristotle’s Syllogistic.John Corcoran - 1973 - Archiv für Geschichte der Philosophie 55 (2):191-219.
    In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and skill. Several (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   18 citations  
  48. The Semantics of Entailment.Richard Routley & Robert K. Meyer - 1973 - In Hughes Leblanc (ed.), Truth, Syntax, and Modality: Proceedings Of The Temple University Conference On Alternative Semantlcs. Amsterdam: North-Holland Publishing Company. pp. 199-243.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   43 citations  
  49. Truth and Proof Without Models: A Development and Justification of the Truth-Valuational Approach.Hanoch Ben-Yami -
    I explain why model theory is unsatisfactory as a semantic theory and has drawbacks as a tool for proofs on logic systems. I then motivate and develop an alternative, truth-valuational substitutional approach (TVS), and prove with it the soundness and completeness of the first order Predicate Calculus with identity and of Modal Propositional Calculus. Modal logic is developed without recourse to possible worlds. Along the way I answer a variety of difficulties that have been raised against TVS and show that, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  50. Un problema abierto de independencia en la teoría de conjuntos relacionado con ultrafiltros no principales sobre el conjunto de los números naturales N, y con Propiedades Ramsey.Franklin Galindo - manuscript
    En el ámbito de la lógica matemática existe un problema sobre la relación lógica entre dos versiones débiles del Axioma de elección (AE) que no se ha podido resolver desde el año 2000 (aproximadamente). Tales versiones están relacionadas con ultrafiltros no principales y con Propiedades Ramsey (Bernstein, Polarizada, Subretículo, Ramsey, Ordinales flotantes, etc). La primera versión débil del AE es la siguiente (A): “Existen ultrafiltros no principales sobre el conjunto de los números naturales (ℕ)”. Y la segunda versión débil del (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
1 — 50 / 53