Abstract
A common kind of explanation in cognitive neuroscience might be called function-theoretic:
with some target cognitive capacity in view, the theorist hypothesizes that the system computes a well-defined function (in the mathematical sense) and explains how computing this function constitutes the exercise of the cognitive capacity (in the system's normal environment). Recently, proponents of the so-called ‘new mechanist’ approach in philosophy of science have argued that a model of a cognitive capacity is explanatory only to the extent that it reveals the causal structure of the mechanism underlying the capacity. If they are right, then a cognitive model that resists a transparent mapping to known neural mechanisms fails to be explanatory. I argue that a function-theoretic characterization of a cognitive capacity can be genuinely explanatory even absent an account of how the capacity is realized in neural hardware.