Results for 'mathematical function'

962 found
Order:
  1. Exploring students' image concept of mathematical functions through error analysis.Melanie Gurat - 2018 - International Journal of Advanced Research and Publications 2 (9):33-46.
    Students do not necessarily use the definitions presented to them when determining examples or non-examples of given mathematical ideas. Instead, they utilize the concept image they carry with them as a result of experiences with such examples and nonexamples. Hence, teachers should try exploring students‟ images of various mathematical concepts in order to improve communication between students and teachers. This suggestion can be addressed through error analysis. This study therefore is a descriptive-qualitative type that looked into the errors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. “The term ‘function’ has no place outside mathematics”: is this even coherent?Terence Rajivan Edward - manuscript
    This paper argues that a criticism attributed to Gregory Bateson – that the term ‘function’ is from mathematics and has no place in social science – looks incoherent, when subject to clarification.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Justifying induction mathematically: Strategies and functions.Alexander Paseau - 2008 - Logique Et Analyse 51 (203):263.
    If the total state of the universe is encodable by a real number, Hardin and Taylor have proved that there is a solution to one version of the problem of induction, or at least a solution to a closely related epistemological problem. Is this philosophical application of the Hardin-Taylor result modest enough? The paper advances grounds for doubt. [A longer and more detailed sequel to this paper, 'Proving Induction', was published in the Australasian Journal of Logic in 2011.].
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Relevance of Mathematics to Brain Functioning.Brian D. Josephson - manuscript
    The slides of a talk given at the Cavendish Laboratory in 2001, relating brain function to concepts such as hyperstructure theory (Baas), Memory Evolutive Systems (Ehresmann), and representational redescription (A Karmiloff-Smith).
    Download  
     
    Export citation  
     
    Bookmark  
  5. Did Gregory Bateson say that the term “function” has no place outside mathematics?Terence Rajivan Edward - manuscript
    A textbook by Norwegian anthropologist Thomas Hylland Eriksen tells us that Gregory Bateson criticized the use of the term ‘function’ in social anthropology on the following grounds: it has no place outside of mathematics. But consulting the Bateson text referred to, he does not say that in his section on function and even endorses certain uses of the term “function” in anthropology. I look into these and his criticisms of functionalism, responding to the criticisms.
    Download  
     
    Export citation  
     
    Bookmark  
  6. Differential Item Functioning of 2018 Basic Education Certificate Examination (BECE) in Mathematics: A Comparative Study of Male and Female Candidates.Ememobong Mfon Ekong, Isaac Ofem Ubi & Eni Iferi Eni - 2020 - International Journal of Educational Administration, Planning and Research 12 (1):57-65.
    The study examined the differential item functioning (DIF) of 2018 Basic Education Certificate examination (BECE) in Mathematics tests of National Examination Council (NECO) and BECE of Akwa Ibom State government in Nigeria. The invariance in the tests with regards to sex was considered using Item Response Theory (IRT) approach. The study area was Akwa Ibom state of Nigeria having a student population of 58,281 for the examination. The sample was made of up 3810 students drawn through a multi-stage sampling approach. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Non-mathematical dimensions of randomness: Implications for problem gambling.Catalin Barboianu - 2024 - Journal of Gambling Issues 36.
    Randomness, a core concept of gambling, is seen in problem gambling as responsible for the formation of the math-related cognitive distortions, especially the Gambler’s Fallacy. In problem-gambling research, the concept of randomness was traditionally referred to as having a mathematical nature and categorized and approached as such. Randomness is not a mathematical concept, and I argue that its weak mathematical dimension is not decisive at all for the randomness-related issues in gambling and problem gambling, including the correction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. A case study of misconceptions students in the learning of mathematics; The concept limit function in high school.Widodo Winarso & Toheri Toheri - 2017 - Jurnal Riset Pendidikan Matematika 4 (1): 120-127.
    This study aims to find out how high the level and trends of student misconceptions experienced by high school students in Indonesia. The subject of research that is a class XI student of Natural Science (IPA) SMA Negeri 1 Anjatan with the subject matter limit function. Forms of research used in this study is a qualitative research, with a strategy that is descriptive qualitative research. The data analysis focused on the results of the students' answers on the test essay (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Mathematical Modeling in Biology: Philosophy and Pragmatics.Rasmus Grønfeldt Winther - 2012 - Frontiers in Plant Evolution and Development 2012:1-3.
    Philosophy can shed light on mathematical modeling and the juxtaposition of modeling and empirical data. This paper explores three philosophical traditions of the structure of scientific theory—Syntactic, Semantic, and Pragmatic—to show that each illuminates mathematical modeling. The Pragmatic View identifies four critical functions of mathematical modeling: (1) unification of both models and data, (2) model fitting to data, (3) mechanism identification accounting for observation, and (4) prediction of future observations. Such facets are explored using a recent exchange (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  10. In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Mathematical Cognition: Brain and Cognitive Research and Its Implications for Education.Qi Dong, Hong-Chuan Zhang & Xin-lin Zhou - 2019 - Journal of Human Cognition 3 (1):25-40.
    Mathematical cognition is one of the most important cognitive functions of human beings. The latest brain and cognitive research have shown that mathematical cognition is a system with multiple components and subsystems. It has phylogenetic root, also is related to ontogenetic development and learning, relying on a large-scale cerebral network including parietal, frontal and temporal regions. Especially, the parietal cortex plays an important role during mathematical cognitive processes. This indicates that language and visuospatial functions are both key (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, particularly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. (3 other versions)Function-Theoretic Explanation and the Search for Neural Mechanisms.Frances Egan - 2017 - In David Michael Kaplan (ed.), Explanation and Integration in Mind and Brain Science. Oxford, United Kingdom: Oxford University Press. pp. 145-163.
    A common kind of explanation in cognitive neuroscience might be called functiontheoretic: with some target cognitive capacity in view, the theorist hypothesizes that the system computes a well-defined function (in the mathematical sense) and explains how computing this function constitutes (in the system’s normal environment) the exercise of the cognitive capacity. Recently, proponents of the so-called ‘new mechanist’ approach in philosophy of science have argued that a model of a cognitive capacity is explanatory only to the extent (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Physical Mathematics and The Fine-Structure Constant.Michael A. Sherbon - 2018 - Journal of Advances in Physics 14 (3):5758-64.
    Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington's Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. Arthur Eddington's work leads to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. The Integrals of the Functions in Aristotelian Ethics.Sedat Güven - manuscript
    In this short paper it is aimed to show that the concept of the “function”(the ergon) is such a concept that beyond its use in everyday language as a process or functioning, it can be considered as a mathematical function, and rather than modeling the phenomenon that is thought (by Aristotle)to correspond to reality, it models the derivative of this phenomenon, therefore it can be likened to a derivative function and the function obtained through its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Two Forms of Functional Reductionism in Physics.Lorenzo Lorenzetti - 2024 - Synthese 203 (2).
    Functional reductionism characterises inter-theoretic reduction as the recovery of the upper-level behaviour described by the reduced theory in terms of the lower-level reducing theory. For instance, finding a statistical mechanical realiser that plays the functional role of thermodynamic entropy allows for establishing a reductive link between thermodynamics and statistical mechanics. This view constitutes a unique approach to reduction that enjoys a number of positive features, but has received limited attention in the philosophy of science. -/- This paper aims to clarify (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Traditional Mathematics Is Not the Language of Nature: Multivalued Interaction Dynamics Makes the World Go Round.Andrei P. Kirilyuk -
    We show that critically accumulating "difficult" problems, contradictions and stagnation in modern science have the unified and well-specified mathematical origin in the explicit, artificial reduction of any interaction problem solution to an "exact", dynamically single-valued (or unitary) function, while in reality any unreduced interaction development leads to a dynamically multivalued solution describing many incompatible system configurations, or "realisations", that permanently replace one another in causally random order. We obtain thus the universal concept of dynamic complexity and chaos impossible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The Mathematical Roots of Semantic Analysis.Axel Arturo Barcelo Aspeitia - manuscript
    Semantic analysis in early analytic philosophy belongs to a long tradition of adopting geometrical methodologies to the solution of philosophical problems. In particular, it adapts Descartes’ development of formalization as a mechanism of analytic representation, for its application in natural language semantics. This article aims to trace the mathematical roots of Frege, Russel and Carnap’s analytic method. Special attention is paid to the formal character of modern analysis introduced by Descartes. The goal is to identify the particular conception of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Ancient Greek Mathematical Proofs and Metareasoning.Mario Bacelar Valente - 2024 - In Maria Zack (ed.), Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics. pp. 15-33.
    We present an approach in which ancient Greek mathematical proofs by Hippocrates of Chios and Euclid are addressed as a form of (guided) intentional reasoning. Schematically, in a proof, we start with a sentence that works as a premise; this sentence is followed by another, the conclusion of what we might take to be an inferential step. That goes on until the last conclusion is reached. Guided by the text, we go through small inferential steps; in each one, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Leibniz, Mathematics and the Monad.Simon Duffy - 2010 - In Sjoerd van Tuinen & Niamh McDonnell (eds.), Deleuze and The fold: a critical reader. New York: Palgrave-Macmillan. pp. 89--111.
    The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. Function-Theoretic Explanation and Neural Mechanisms.Frances Egan - forthcoming - In David M. Kaplan (ed.), Integrating Mind and Brain Science: Mechanistic Perspectives and Beyond. Oxford University Press.
    A common kind of explanation in cognitive neuroscience might be called function-theoretic: with some target cognitive capacity in view, the theorist hypothesizes that the system computes a well-defined function (in the mathematical sense) and explains how computing this function constitutes (in the system’s normal environment) the exercise of the cognitive capacity. Recently, proponents of the so-called ‘new mechanist’ approach in philosophy of science have argued that a model of a cognitive capacity is explanatory only to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. A falsifiable statement Ψ of the form "∃f:N→N of unknown computability such that ..." which significantly strengthens a non-trivial mathematical theorem.Apoloniusz Tyszka - manuscript
    We present a new constructive proof of the following theorem: there exists a limit-computable function β_1:N→N which eventually dominates every computable function δ_1:N→N. We prove: (1) there exists a limit-computable function f:N→N of unknown computability which eventually dominates every function δ:N→N with a single-fold Diophantine representation, (2) statement (1) significantly strengthens a non-trivial mathematical theorem, (3) Martin Davis' conjecture on single-fold Diophantine representations disproves (1). We present both constructive and non-constructive proof of (1).
    Download  
     
    Export citation  
     
    Bookmark  
  24. On the mathematical expression of the interpretative exercise.David E. Bustamante Segovia - manuscript
    ● Any given placement (e.g. Sun in Taurus; Mars in Capricorn; Mercury in the third house) is necessarily common to tens of thousands of people. Saturn in the ninth house, for example, will not behave the same or produce the same effects in the twenty or one hundred charts in which we find it there. In each case Saturn will behave in accordance with the rest of the astrographic/chart composition (as if we stayed in the same hotel in different epochs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Computability. Computable functions, logic, and the foundations of mathematics. [REVIEW]R. Zach - 2002 - History and Philosophy of Logic 23 (1):67-69.
    Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
    Download  
     
    Export citation  
     
    Bookmark  
  26. The functions of Russell’s no class theory.Kevin C. Klement - 2010 - Review of Symbolic Logic 3 (4):633-664.
    Certain commentators on Russell's “no class” theory, in which apparent reference to classes or sets is eliminated using higher-order quantification, including W. V. Quine and (recently) Scott Soames, have doubted its success, noting the obscurity of Russell’s understanding of so-called “propositional functions”. These critics allege that realist readings of propositional functions fail to avoid commitment to classes or sets (or something equally problematic), and that nominalist readings fail to meet the demands placed on classes by mathematics. I show that Russell (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  27. ​​Our Fundamental Physical Space: An Essay on the Metaphysics of the Wave Function.Eddy Keming Chen - 2017 - Journal of Philosophy 114 (7):333-365.
    The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  28. Numerical cognition and mathematical realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  29. Mathematical Models of Abstract Systems: Knowing abstract geometric forms.Jean-Pierre Marquis - 2013 - Annales de la Faculté des Sciences de Toulouse 22 (5):969-1016.
    Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Rule-following and Functions.André Porto - 2013 - O Que Nos Faz Pensar 33:95-141.
    This paper presents a new reconstruction of Wittgenstein’s famous (and controversial) rule-following arguments. Two are the novel features offered by our reconstruction. In the first place, we propose a shift of the central focus of the discussion, from the general semantics and the philosophy of mind to the philosophy of mathematics and the rejection of the notion of a function. The second new feature is positive: we argue that Wittgenstein offers us a new alternative notion of a rule (to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  24
    A Hyperbolic Secant Welfare Function.Walter Barta - manuscript
    Here we introduce a formulation for describing welfare based on a hyperbolic secant function, derived from certain intuitions about the nature of material and experiential conditions, that satisfies a number of normatively critical constraints, making for an elegant and satisfactory welfarist axiology. We first introduce intuitions about experiential conditions, material conditions, and their valences; we second make a mathematical formulation of our hedonic calculus consistent with these intuitions; we third make several manipulations of our formulation in order to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Mathematical models of games of chance: Epistemological taxonomy and potential in problem-gambling research.Catalin Barboianu - 2015 - UNLV Gaming Research and Review Journal 19 (1):17-30.
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  33. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Wittgenstein on Mathematics and Certainties.Martin Kusch - 2016 - International Journal for the Study of Skepticism 6 (2-3):120-142.
    _ Source: _Volume 6, Issue 2-3, pp 120 - 142 This paper aims to contribute to the debate over epistemic versus non-epistemic readings of the ‘hinges’ in Wittgenstein’s _On Certainty_. I follow Marie McGinn’s and Daniele Moyal-Sharrock’s lead in developing an analogy between mathematical sentences and certainties, and using the former as a model for the latter. However, I disagree with McGinn’s and Moyal-Sharrock’s interpretations concerning Wittgenstein’s views of both relata. I argue that mathematical sentences as well as (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  35. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's theorem in RCA0, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Mathematical Models for Unstable Quantum Systems and Gamow States.Manuel Gadella, Sebastian Fortin, Juan Pablo Jorge & Marcelo Losada - 2022 - Entropy 24 (6):804.
    We review some results in the theory of non-relativistic quantum unstable systems. We account for the most important definitions of quantum resonances that we identify with unstable quantum systems. Then, we recall the properties and construction of Gamow states as vectors in some extensions of Hilbert spaces, called Rigged Hilbert Spaces. Gamow states account for the purely exponential decaying part of a resonance; the experimental exponential decay for long periods of time physically characterizes a resonance. We briefly discuss one of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle on which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Unrealistic Models in Mathematics.William D'Alessandro - 2023 - Philosophers' Imprint 23 (#27).
    Models are indispensable tools of scientific inquiry, and one of their main uses is to improve our understanding of the phenomena they represent. How do models accomplish this? And what does this tell us about the nature of understanding? While much recent work has aimed at answering these questions, philosophers' focus has been squarely on models in empirical science. I aim to show that pure mathematics also deserves a seat at the table. I begin by presenting two cases: Cramér’s random (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  41. Linguistic Functions.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    In this book, for the first time, authors try to introduce the concept of linguistic variables as a continuum of linguistic terms/elements/words in par or similar to a real continuum. For instance, we have the linguistic variable, say the heights of people, then we place the heights in the linguistic continuum [shortest, tallest] unlike the real continuum (–∞, ∞) where both –∞ or +∞ is only a non-included symbols of the real continuum, but in case of the linguistic continuum we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Topics in Mathematical Consciousness Science.Johannes Kleiner - 2024 - Dissertation, Munich Center for Mathematical Philosophy & Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich
    The scientific study of consciousness, also referred to as consciousness science, is a young scientific field devoted to understanding how conscious experiences and the brain relate. It comprises a host of theories, experiments, and analyses that aim to investigate the problem of consciousness empirically, theoretically, and conceptually. This thesis addresses some of the questions that arise in these investigations from a formal and mathematical perspective. These questions concern theories of consciousness, experimental paradigms, methodology, and artificial consciousness. -/- Regarding theories (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Proof phenomenon as a function of the phenomenology of proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a (...) proving process? What is the ontological status of a mathematical proof? Can computer assisted provers output a proof? Taking a naturalized world account, I will assess the relationship between mathematics, the physical world and consciousness by introducing a significant conceptual distinction between proving and proof. I will propose that proving is a phenomenological conscious experience. This experience involves a combination of what Kurt Gödel called intuition, and what Husserl called intentionality. In contrast, proof is a function of that process — the mathematical phenomenon — that objectively self-presents a property in the world, and that results from a spatiotemporal unity being subject to the exact laws of nature. In this essay, I apply phenomenology to mathematical proving as a performance of consciousness, that is, a lived experience expressed and formalized in language, in which there is the possibility of formulating intersubjectively shareable meanings. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. The Epistemology of Mathematical Necessity.Catherine Legg - 2018 - In Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah Perez-Kriz & Francesco Bellucci (eds.), Diagrammatic Representation and Inference10th International Conference, Diagrams 2018, Edinburgh, UK, June 18-22, 2018, Proceedings. Cham, Switzerland: Springer-Verlag. pp. 810-813.
    It seems possible to know that a mathematical claim is necessarily true by inspecting a diagrammatic proof. Yet how does this work, given that human perception seems to just (as Hume assumed) ‘show us particular objects in front of us’? I draw on Peirce’s account of perception to answer this question. Peirce considered mathematics as experimental a science as physics. Drawing on an example, I highlight the existence of a primitive constraint or blocking function in our thinking which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Mathematics of Slots: Configurations, Combinations, Probabilities.Catalin Barboianu - 2013 - Craiova, Romania: Infarom.
    This eighth book of the author on gambling math presents in accessible terms the cold mathematics behind the sparkling slot machines, either physical or virtual. It contains all the mathematical facts grounding the configuration, functionality, outcome, and profits of the slot games. Therefore, it is not a so-called how-to-win book, but a complete, rigorous mathematical guide for the slot player and also for game producers, being unique in this respect. As it is primarily addressed to the slot player, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  47. Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  16
    Specifying Welfare Functions according to Unreal and Trivial Boundary Conditions.Walter Barta - manuscript
    In his book Reasons and Persons, Derek Parfit proposes the search for a self-consistent theory of population ethics, a theory capable of answering questions about the welfares of populations in a manner that satisfies all of our ethical intuitions, what he calls “Theory X.” But in the same work, Parfit offers what he sees as a major obstacle to that goal, the so-called “Repugnant Conclusion”, worrying whether the most well-off population is an increasingly large population. This problem, along with Roderick (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. (1 other version)A Failed Encounter in Mathematics and Chemistry: The Folded Models of van ‘t Hoff and Sachse.Michael Friedman - 2016 - Teorie Vědy / Theory of Science 38 (3):359-386.
    Three-dimensional material models of molecules were used throughout the 19th century, either functioning as a mere representation or opening new epistemic horizons. In this paper, two case studies are examined: the 1875 models of van ‘t Hoff and the 1890 models of Sachse. What is unique in these two case studies is that both models were not only folded, but were also conceptualized mathematically. When viewed in light of the chemical research of that period not only were both of these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The mathematics of Einstein, euclid and genetic manipulation.Marvin Eli Kirsh - manuscript
    This manuscript is intended to illustrate the existence of a natural ethic as a universal and special case in which the notion of proximity differs from the reflexively perceived physical notion that is both commonly and scientifically employed. In this case actual proximity in nature is proposed to diverge from the physical lines construed to connect points to be a function of relations of the lines of perception as the components of a universal volume that is energetic and active, (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 962