Logical Entropy: Introduction to Classical and Quantum Logical Information theory

Entropy 20 (9):679 (2018)
Download Edit this record How to cite View on PhilPapers
Abstract
Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of this paper is to give the direct generalization to quantum logical information theory that similarly focuses on the pairs of eigenstates distinguished by an observable, i.e., qudits of an observable. The fundamental theorem for quantum logical entropy and measurement establishes a direct quantitative connection between the increase in quantum logical entropy due to a projective measurement and the eigenstates that are distinguished by the measurement. Both the classical and quantum versions of logical entropy have simple interpretations as “two-draw” probabilities for distinctions. The conclusion is that quantum logical entropy is the simple and natural notion of information for quantum information theory focusing on the distinguishing of quantum states.
PhilPapers/Archive ID
ELLLEI
Upload history
Archival date: 2020-03-10
View other versions
Added to PP index
2018-09-07

Total views
77 ( #45,946 of 2,432,331 )

Recent downloads (6 months)
25 ( #29,244 of 2,432,331 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.