Results for 'quantum logical entropy'

927 found
Order:
  1. Logical Entropy: Introduction to Classical and Quantum Logical Information theory.David Ellerman - 2018 - Entropy 20 (9):679.
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting measure on elements (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. A New Logic, a New Information Measure, and a New Information-Based Approach to Interpreting Quantum Mechanics.David Ellerman - 2024 - Entropy Special Issue: Information-Theoretic Concepts in Physics 26 (2).
    The new logic of partitions is dual to the usual Boolean logic of subsets (usually presented only in the special case of the logic of propositions) in the sense that partitions and subsets are category-theoretic duals. The new information measure of logical entropy is the normalized quantitative version of partitions. The new approach to interpreting quantum mechanics (QM) is showing that the mathematics (not the physics) of QM is the linearized Hilbert space version of the mathematics of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to (Hilbert) Vector Spaces.David Ellerman - 2022 - Foundations of Physics 52 (5):1-40.
    The purpose of this paper is to show that the mathematics of quantum mechanics is the mathematics of set partitions linearized to vector spaces, particularly in Hilbert spaces. That is, the math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions. The key analytical concepts are definiteness versus indefiniteness, distinctions versus indistinctions, and distinguishability versus indistinguishability. The key machinery to go from indefinite to more (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  40
    A Fundamental Duality in the Exact Sciences: The Application to Quantum Mechanics.David Ellerman - 2024 - Foundations 4 (2):175-204.
    There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on logical entropy) are shown (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  7. The temporal foundation of the principle of maximal entropy.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (11):1-3.
    The principle of maximal entropy (further abbreviated as “MaxEnt”) can be founded on the formal mechanism, in which future transforms into past by the mediation of present. This allows of MaxEnt to be investigated by the theory of quantum information. MaxEnt can be considered as an inductive analog or generalization of “Occam’s razor”. It depends crucially on choice and thus on information just as all inductive methods of reasoning. The essence shared by Occam’s razor and MaxEnt is for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. On the (Im)possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. An introduction to logical entropy and its relation to Shannon entropy.David Ellerman - 2013 - International Journal of Semantic Computing 7 (2):121-145.
    The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set--just as the usual logical notion of probability based (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10. (1 other version)Minimal Disturbance in Quantum Logic.Sergio Martinez - 1988 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:83 - 88.
    I construct a quantum-logical model of the type of situation that seems to be at the root of the problem of interpreting the projection postulate (Luders' rule) as a criterion of minimal disturbance. It is shown that the most natural way of characterizing minimal disturbance leads to contradictory conclusions concerning the final state.
    Download  
     
    Export citation  
     
    Bookmark  
  11. The True Human Condition.Rodney Bartlett - manuscript
    My article began as a very short 250 words inspired by astrophysicist Jeff Hester's (pro-evolution) pages on entropy (Astronomy magazine - Oct. and Nov. 2017 - http://www.astronomy.com/magazine/jeff-hester/2017/09/entropys-rainbow and http://www.astronomy.com/magazine/jeff-hester/2017/10/entropy-redux). The letter I wrote pointed out evolution's pluses (eg adaptations) and minuses (regarding origins). It went on to speak of a human, scientific, entirely natural explanation for what is called God. It proposes that the true human condition after death and before birth is as a member of the Elohim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The Problems of Quantum Mechanics and Possible solutions : Copenhagen interpretation, many worlds interpretation, transactional interpretation, decoherence and quantum logic.Rochelle Marianne Forrester - unknown
    This paper reviews some of the literature on the philosophy of quantum mechanics. The publications involved tend to follow similar patterns of first identifying the mysteries, puzzles or paradoxes of the quantum world, and then discussing the existing interpretations of these matters, before the authors produce their own interpretations, or side with one of the existing views. The paper will show that all interpretations of quantum mechanics involve elements of apparent weirdness. They suggest that the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  16. The Identity of Logic and the World in Terms of Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (21):1-4.
    One can construct a mapping between Hilbert space and the class of all logic if the latter is defined as the set of all well-orderings of some relevant set (or class). That mapping can be further interpreted as a mapping of all states of all quantum systems, on the one hand, and all logic, on the other hand. The collection of all states of all quantum systems is equivalent to the world (the universe) as a whole. Thus that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be interpreted. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Logical necessity of Quantum Mechanics.Enrico Pier Giorgio Cadeddu - 2023 - Journal of Modern and Applied Physics 6 (2):1-4.
    From classical mechanics, in particular the motion in a straight line, together set theory and ordinal number theory, we prove a not-classical behaviour, a discontinuous motion and emission.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  20. On the Connection Between Quantum Probability and Geometry.Federico Holik - 2021 - Quanta 10 (1):1-14.
    We discuss the mathematical structures that underlie quantum probabilities. More specifically, we explore possible connections between logic, geometry and probability theory. We propose an interpretation that generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories. We stress the relevance of developing a geometrical interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. (1 other version)How Entropy Explains the Emergence of Consciousness: The Entropic Theory.Peter C. Lugten - 2024 - Journal of Neurobehavioral Sciences 11 (1):10-18.
    Background: Emergentism as an ontology of consciousness leaves unanswered the question as to its mechanism. Aim: I aim to solve the Body-Mind problem by explaining how conscious organisms emerged on an evolutionary basis at various times in accordance with an accepted scientific principle, through a mechanism that cannot be understood, in principle. Proposal: The reason for this cloak of secrecy is found in a seeming contradiction in the behaviour of information with respect to the first two laws of thermodynamics. Information, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Inductive Logic from the Viewpoint of Quantum Information.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (13):1-2.
    The resolving of the main problem of quantum mechanics about how a quantum leap and a smooth motion can be uniformly described resolves also the problem of how a distribution of reliable data and a sequence of deductive conclusions can be uniformly described by means of a relevant wave function “Ψdata”.
    Download  
     
    Export citation  
     
    Bookmark  
  23. On the Role of Inconsistency in Quantum Foundational Debate and Hilbert Space Formulation.Debajyoti Gangopadhyay - 2022 - Quanta 11 (Number 1):28-41.
    This article is intended mainly to develop an expository outline of an inherently inconsistent reasoning in the development of quantum mechanics during 1920s, which set up the background of proposing different variants of quantum logic a bit later. We will discuss here two of the quantum logical variants with reference to Hilbert space formulation, based on the proposals of Bohr and Schrödinger as a result of addressing the same kernel of difficulties and will give a relative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Logic, Geometry And Probability Theory.Federico Holik - 2013 - SOP Transactions On Theoretical Physics 1:128 - 137.
    We discuss the relationship between logic, geometry and probability theory under the light of a novel approach to quantum probabilities which generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Further on informational quanta, interactions, and entropy under the granular view of value formation.Quan-Hoang Vuong & Minh-Hoang Nguyen - 2024 - SSRN.
    A recent study suggests that value and quantum states seem to be governed by the same underlying mechanisms. In our recent book titled "Better economics for the Earth: A lesson from quantum and information theories," specifically Chapter 5, we have proposed an informational entropy-based notion of value, drawing on the granular worldview and primary features of quantum mechanics, Shannon’s information theory, and the mindsponge theory. Specifically, the notion suggests that values are created through the interactions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Derivative Metaphysical Indeterminacy and Quantum Physics.Alessandro Torza - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer. pp. 337-350.
    This chapter argues that quantum indeterminacy can be construed as a merely derivative phenomenon. The possibility of merely derivative quantum indeterminacy undermines both a recent argument against quantum indeterminacy due to David Glick, and an argument against the possibility of merely derivative indeterminacy due to Elizabeth Barnes.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Logical Types in Quantum Mechanics.Andrew Soltau - manuscript
    Barbour shows that time does not exist in the physical world, and similar conclusions are reached by others such as Deutsch, Davies and Woodward. Every possible configuration of a physical environment simply exists in the universe. The system is objectively static. Observation, however, is an inherently transtemporal phenomenon, involving actual or effective change of the configuration, collapse. Since, in a static environment, all possible configurations exist, transtemporal reality is of the logical type of a movie. The frame of a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Subjective probability and quantum certainty.Carlton M. Caves, Christopher A. Fuchs & Rüdiger Schack - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):255-274.
    In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—represent an agent’s degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for the (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  30. From Quantum Entanglement to Spatiotemporal Distance.Alyssa Ney - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime: Implications From Quantum Gravity. Oxford: Oxford University Press.
    Within the field of quantum gravity, there is an influential research program developing the connection between quantum entanglement and spatiotemporal distance. Quantum information theory gives us highly refined tools for quantifying quantum entanglement such as the entanglement entropy. Through a series of well-confirmed results, it has been shown how these facts about the entanglement entropy of component systems may be connected to facts about spatiotemporal distance. Physicists are seeing these results as yielding promising methods (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. (2 other versions)On the logical origins of quantum mechanics demonstrated by using Clifford algebra.Elio Conte - 2011 - Electronic Journal of Theoretical Physics 8 (25):109-126.
    We review a rough scheme of quantum mechanics using the Clifford algebra. Following the steps previously published in a paper by another author [31], we demonstrate that quantum interference arises in a Clifford algebraic formulation of quantum mechanics. In 1932 J. von Neumann showed that projection operators and, in particular, quantum density matrices can be interpreted as logical statements. In accord with a previously obtained result by V. F Orlov , in this paper we invert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Standard Quantum Theory Derived from First Physical Principles.Mehran Shaghaghi - manuscript
    The mathematical formalism of quantum theory has been established for nearly a century, yet its physical foundations remain elusive. In recent decades, connections between quantum theory and information theory have garnered increasing attention. This study presents a physical derivation of the mathematical formalism quantum theory based on information-theoretic considerations in physical systems. We postulate that quantum systems are characterized by single independent adjustable variables. Utilizing this physical postulate along with the conservation of total probability, we derive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Does von Neumann Entropy Correspond to Thermodynamic Entropy?Eugene Y. S. Chua - 2021 - Philosophy of Science 88 (1):145-168.
    Conventional wisdom holds that the von Neumann entropy corresponds to thermodynamic entropy, but Hemmo and Shenker (2006) have recently argued against this view by attacking von Neumann's (1955) argument. I argue that Hemmo and Shenker's arguments fail due to several misunderstandings: about statistical-mechanical and thermodynamic domains of applicability, about the nature of mixed states, and about the role of approximations in physics. As a result, their arguments fail in all cases: in the single-particle case, the finite particles case, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Quantum phenomenology as a “rigorous science”: the triad of epoché and the symmetries of information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (48):1-18.
    Husserl (a mathematician by education) remained a few famous and notable philosophical “slogans” along with his innovative doctrine of phenomenology directed to transcend “reality” in a more general essence underlying both “body” and “mind” (after Descartes) and called sometimes “ontology” (terminologically following his notorious assistant Heidegger). Then, Husserl’s tradition can be tracked as an idea for philosophy to be reinterpreted in a way to be both generalized and mathenatizable in the final analysis. The paper offers a pattern borrowed from the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Imprecise Probabilities in Quantum Mechanics.Stephan Hartmann - 2015 - In Colleen E. Crangle, Adolfo García de la Sienra & Helen E. Longino (eds.), Foundations and Methods From Mathematics to Neuroscience: Essays Inspired by Patrick Suppes. Stanford Univ Center for the Study. pp. 77-82.
    In his entry on "Quantum Logic and Probability Theory" in the Stanford Encyclopedia of Philosophy, Alexander Wilce (2012) writes that "it is uncontroversial (though remarkable) the formal apparatus quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over the 'quantum logic' of projection operators on a Hilbert space." For a long time, Patrick Suppes has opposed this view (see, for example, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37.  72
    AI training data, model success likelihood, and informational entropy-based value.Quan-Hoang Vuong, Viet-Phuong La & Minh-Hoang Nguyen - manuscript
    Since the release of OpenAI's ChatGPT, the world has entered a race to develop more capable and powerful AI, including artificial general intelligence (AGI). The development is constrained by the dependency of AI on the model, quality, and quantity of training data, making the AI training process highly costly in terms of resources and environmental consequences. Thus, improving the effectiveness and efficiency of the AI training process is essential, especially when the Earth is approaching the climate tipping points and planetary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Tractatus versus Quantum Mechanics.Berislav Žarnić & Lovre de Grisogono - 2015 - In Luka Boršić, Ivana Skuhala Karsman & Franjo Sokolić (eds.), Physics and Philosophy. Institute of Philosophy in Zagreb. pp. 27–44.
    This paper is divided in four parts. In the first part we introduce the method of internal critique of philosophical theories by examination of their external consistency with scientific theories. In the second part two metaphysical and one epistemological postulate of Wittgenstein's Tractatus are made explicit and formally expressed. In the third part we examine whether Tractarian metaphysical and epistemological postulates (the independence of simple states of affairs, the unique mode of their composition, possibility of complete empirical knowledge) are externally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Topos Theoretic Quantum Realism.Benjamin Eva - 2017 - British Journal for the Philosophy of Science 68 (4):1149-1181.
    ABSTRACT Topos quantum theory is standardly portrayed as a kind of ‘neo-realist’ reformulation of quantum mechanics.1 1 In this article, I study the extent to which TQT can really be characterized as a realist formulation of the theory, and examine the question of whether the kind of realism that is provided by TQT satisfies the philosophical motivations that are usually associated with the search for a realist reformulation of quantum theory. Specifically, I show that the notion of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  40. Quantum-like non-separability of concept combinations, emergent associates and abduction.P. Bruza, K. Kitto, B. Ramm, L. Sitbon & D. Song - 2012 - Logic Journal of the IGPL 20 (2):445-457.
    Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  41. Heisenberg quantum mechanics, numeral set-theory and.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Logical Maximalism in the Empirical Sciences.Constantin C. Brîncuș - 2021 - In Parusniková Zuzana & Merritt David (eds.), Karl Popper's Science and Philosophy. Cham, Switzerland: Springer. pp. 171-184.
    K. R. Popper distinguished between two main uses of logic, the demonstrational one, in mathematical proofs, and the derivational one, in the empirical sciences. These two uses are governed by the following methodological constraints: in mathematical proofs one ought to use minimal logical means (logical minimalism), while in the empirical sciences one ought to use the strongest available logic (logical maximalism). In this paper I discuss whether Popper’s critical rationalism is compatible with a revision of logic in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. (1 other version)Quantum mechanics and consciousness: Thoughts on a causal correspondence theory.Ian J. Thompson - 2017 - In S. Gosh, B. D. Mundhra, K. Vasudeva Rao & Varun Agarwal (eds.), Quantum Physics & Consciousness - Thoughts of Founding Fathers of Quantum Physics and other Renowned Scholars. Bhaktivedanta Institute. pp. 173-185.
    Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  47. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  48. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. A taxonomy for the mereology of entangled quantum systems.Paul M. Näger & Niko Strobach - manuscript
    The emerging field of quantum mereology considers part-whole relations in quantum systems. Entangled quantum systems pose a peculiar problem in the field, since their total states are not reducible to that of their parts. While there exist several established proposals for modelling entangled systems, like monistic holism or relational holism, there is considerable unclarity, which further positions are available. Using the lambda operator and plural logic as formal tools, we review and develop conceivable models and evaluate their (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. On the Embodiment of Space and Time: Triadic logic, quantum indeterminacy and the metaphysics of relativity.Timothy M. Rogers - manuscript
    Triadic (systemical) logic can provide an interpretive paradigm for understanding how quantum indeterminacy is a consequence of the formal nature of light in relativity theory. This interpretive paradigm is coherent and constitutionally open to ethical and theological interests. -/- In this statement: -/- (1) Triadic logic refers to a formal pattern that describes systemic (collaborative) processes involving signs that mediate between interiority (individuation) and exteriority (generalized worldview or Umwelt). It is also called systemical logic or the logic of relatives. (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 927