Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus

Synthese (12) (2017)
  Copy   BIBTEX

Abstract

This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts all required the brackets to take values in ℤ₂. But the usual QM brackets <ψ|ϕ> give the "overlap" between states ψ and ϕ, so for subsets S,T⊆U, the natural definition is <S|T>=|S∩T| (taking values in the natural numbers). This allows QM/sets to be developed with a full probability calculus that turns out to be a non-commutative extension of classical Laplace-Boole finite probability theory. The pedagogical model is illustrated by giving simple treatments of the indeterminacy principle, the double-slit experiment, Bell's Theorem, and identical particles in QM/Sets. A more technical appendix explains the mathematics behind carrying some vector space structures between QM over ℂ and QM/Sets over ℤ₂.

Author's Profile

David Ellerman
University of Ljubljana

Analytics

Added to PP
2015-09-07

Downloads
412 (#57,001)

6 months
109 (#48,244)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?