# Quantum Mechanics over sets

*Synthese*(forthcoming)

**Abstract**

This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts all required the brackets to take values in ℤ₂. But the usual QM brackets <ψ|ϕ> give the "overlap" between states ψ and ϕ, so for subsets S,T⊆U, the natural definition is <S|T>=|S∩T| (taking values in the natural numbers). This allows QM/sets to be developed with a full probability calculus that turns out to be a non-commutative extension of classical Laplace-Boole finite probability theory. The pedagogical model is illustrated by giving simple treatments of the indeterminacy principle, the double-slit experiment, Bell's Theorem, and identical particles in QM/Sets. A more technical appendix explains the mathematics behind carrying some vector space structures between QM over ℂ and QM/Sets over ℤ₂.

**Keywords**

**Categories**

**Reprint years**

2013

**PhilPapers/Archive ID**

ELLQMO

**Upload history**

Archival date: 2017-09-04

View other versions

View other versions

**Added to PP index**

2015-09-07

**Total views**

81 ( #46,126 of 2,439,419 )

**Recent downloads (6 months)**

7 ( #52,747 of 2,439,419 )

How can I increase my downloads?

**Downloads since first upload**

*This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.*