Contents
81 found
Order:
1 — 50 / 81
  1. Energy Non-conservation in Quantum Mechanics.Sean M. Carroll & Jackie Lodman - 2021 - Foundations of Physics 51 (4):1-15.
    We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, independent of the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. How Quantum Theory Helps Us Explain.Richard Healey - 2012 - British Journal for the Philosophy of Science (1):axt031.
    I offer an account of how the quantum theory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities is then illustrated by showing (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   13 citations  
  3. On the (Im)possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end of a quantum computation as irreversible (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. The Invalid Inference of Universality in Quantum Mechanics.Andrew Knight - manuscript
    The universality assumption (“U”) that quantum wave states only evolve by linear or unitary dynamics has led to a variety of paradoxes in the foundations of physics. U is not directly supported by empirical evidence but is rather an inference from data obtained from microscopic systems. The inference of U conflicts with empirical observations of macroscopic systems, giving rise to the century-old measurement problem and subjecting the inference of U to a higher standard of proof, the burden of which lies (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. (2 other versions)McTaggart meets Schrodinger's Cat.Paul Merriam - manuscript
    This paper proposes an interpretation of time that is an 'A-theory' in that it incorporates both McTaggart's A-series and his B-series. The A-series characteristics are supposed to be 'ontologically private' analogous to qualia in the problem of other minds, such as in the Inverted Spectrum thought experiment, and is given a definition. The main idea is then that the experimenter and the cat do not share the same A-series characteristics, e.g. the same 'now', to some extent. So there is no (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Notes 2 A theory of time 6 7 2019.Paul Merriam - manuscript
    A theory of time was proposed in "A theory of time", an early version of which is on PhilPapers. The idea was that the A-series features of a physical system are ontologically private, and this was given a mathematical definition. Also B-series features are ontologically public. This brief note is a detailed rumination on path-integrals and Schrodinger's Cat, in this theory.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. From McTaggart to AdS^5 signature v. 4.Paul Merriam - manuscript
    The purpose of this yet-another version of this note is to make another attempt to show how an 'AB-series' interpretation of time, given in a companion paper, leads, surprisingly, apparently, to the signature of the physicists' important AdS^5 geometry. This is not a theory of 2 time dimensions. Rather, it is a theory of 1 time dimension that has both A-series and B-series characteristics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Hybrid Time Physics.Paul Merriam - manuscript
    I accept that McTaggart's A-series and B-series are not inter-reducible and that both are needed for a complete temporal description of a physical system. I consider the Wigner's Friend thought experiment. The A-series are associated with each (quantum) system, and relativity is associated with the B-series. I consider temporal evolution through this 'hybrid' time. We may define the rate of temporal flow as 1 B-series second per A-series second.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. The UNBELIEVABLE similar ideas between Theise and Menas’ ideas (2016) and my ideas (2002-2008) in Physics and Cognitive Neuroscience and Philosophy (the mind-brain problem, quantum mechanics, etc.).Gabriel Vacariu - manuscript
    The UNBELIEVABLE similar ideas between Theise and Menas’ ideas (2016) and my ideas (2002-2008) in Physics and Cognitive Neuroscience and Philosophy (the mind-brain problem, quantum mechanics, etc.) -/- (2016) Theise D. Neil (Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA) and Kafatos C. Menas (bDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; cSchmid College of Science & Technology, Chapman University, Orange, CA, USA) (2016), REVIEW - Fundamental awareness: A (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. (1 other version)A Model for Creation: Part I.Paul Bernard White - manuscript
    Four initial postulates are presented (with two more added later), which state that construction of the physical universe proceeds from a sequence of discrete steps or "projections" --- a process that yields a sequence of discrete levels (labeled 0, 1, 2, 3, 4). At or above level 2 the model yields a (3+1)-dimensional structure, which is interpreted as ordinary space and time. As a result, time does not exist below level 2 of the system, and thus the quantum of action, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and discontinuous.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Notes on the reality of the quantum state.Shan Gao - 2014
    Based on an analysis of protective measurements, we show that the quantum state represents the physical state of a single quantum system. This result is more definite than the PBR theorem [Pusey, Barrett, and Rudolph, Nature Phys. 8, 475 (2012)].
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Three possible implications of spacetime discreteness.Shan Gao - 2013
    We analyze the possible implications of spacetime discreteness for the special and general relativity and quantum theory. It is argued that the existence of a minimum size of spacetime may explain the invariance of the speed of light in special relativity and Einstein’s equivalence principle in general relativity. Moreover, the discreteness of spacetime may also result in the collapse of the wave function in quantum mechanics, which may provide a possible solution to the quantum measurement problem. These interesting results might (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Graded Qualities.Claudio Calosi & Robert Michels - forthcoming - Synthese.
    The idea that qualities can be had partly or to an intermediate degree is controversial among contemporary metaphysicians, but also has a considerable pedigree among philosophers and scientists. In this paper, we first aim to show that metaphysical sense can be made of this idea by proposing a partial taxonomy of metaphysical accounts of graded qualities, focusing on three particular approaches: one which explicates having a quality to a degree in terms of having a property with an in-built degree, another (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. von Neumann first outlined the possible non existence of dispersion free ensembles in quantum mechanics: may we verify non existing dispersion free ensembles by application of quantum mechanics in experiments at perceptive and cognitive level?Elio Conte - forthcoming - Neuroquantology.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Distribution can be Dropped: Reply to Rumfitt.Iulian D. Toader - forthcoming - Analysis.
    Ian Rumfitt has argued that rational adjudication against classical logic in quantum mechanics is not only unnecessary, but impossible as well. I explain why the argument fails.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Logico philosophical summary of Ontology of Knowledge iss.20240111.Jean-Louis Boucon - 2024 - Academia.
    The Ontology of Knowledge (OK) does not claim to expose the truth of reality but only to propose a coherent model of representation according to which: -Reality is not subject to form or time. -The Knowing Subject is a wave of meaning running through the immobile reality.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. Distributed information is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. The metaphysics of decoherence.Antonio Vassallo & Davide Romano - 2023 - Erkenntnis 88 (6):2609–2631.
    The paper investigates the type of realism that best suits the framework of decoherence taken at face value without postulating a plurality of worlds, or additional hidden variables, or non-unitary dynamical mechanisms. It is argued that this reading of decoherence leads to an extremely radical type of perspectival realism, especially when cosmological decoherence is considered.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice among infinitely many alternatives, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. Reasonable Inferences From Quantum Mechanics: A Response to “Quantum Misuse in Psychic Literature”.Bernardo Kastrup - 2019 - Journal of Near-Death Studies 37 (3):185-200.
    This invited article is a response to the paper “Quantum Misuse in Psychic Literature,” by Jack A. Mroczkowski and Alexis P. Malozemoff, published in this issue of the Journal of Near-Death Studies. Whereas I sympathize with Mroczkowski’s and Malozemoff’s cause and goals, and I recognize the problem they attempted to tackle, I argue that their criticisms often overshot the mark and end up adding to the confusion. I address nine specific technical points that Mroczkowski and Malozemoff accused popular writers in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Claudio Calosi & Matteo Morganti - 2018 - British Journal for the Philosophy of Science:axy064.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   20 citations  
  23. Plasma Brain Dynamics (PBD): II. Quantum Effects on Consciousness.John Z. G. Ma - 2018 - Cosmos and History 14 (1):91-104.
    This article studies the quantum effect of the brain neuronal system on both normal and abnormal conscious states. It develops Plasma Brain Dynamics (PBD) to obtain a set of kinetic quantum-plasma Wigner-Poisson equations. The model is established under typical electrostatic and collision-free conditions in both the absence and presence of an external magnetic field. The quantum perturbation is solved analytically by employing a backward-mapping approach to the motion of electrons. Results expose that the quantum perturbation turns out to be zero (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. (1 other version)Could Inelastic Interactions Induce Quantum Probabilistic Transitions?Nicholas Maxwell - 2018 - In Shan Gao (ed.), Collapse of the Wave Function: Models, Ontology, Origin, and Implications. New York, NY: Cambridge University Press.
    What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantum theory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very natural solution to the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. (1 other version)Could Inelastic Interactions Induce Quantum Probabilistic Transitions?Nicholas Maxwell - 2018 - In Shan Gao (ed.), Collapse of the Wave Function: Models, Ontology, Origin, and Implications. New York, NY: Cambridge University Press. pp. 257-273.
    What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantum theory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very natural solution to the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Quantum Physics Seen from a Perspective of the Humanities.Yusuke Kaneko - 2017 - The Basis: The Annual Bulletin of ResearchCenter for Liberal Education (Musashino University) 7:171-193.
    Although written in Japanese, an overall picture of quantum physics is drawn, which would surely be useful for beginners as well as researchers of the humanities.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. Is QBism the Future of Quantum Physics? [REVIEW]Kelvin McQueen - 2017 - Quantum Times 2017.
    The purpose of this book is to explain Quantum Bayesianism (‘QBism’) to “people without easy access to mathematical formulas and equations” (4-5). Qbism is an interpretation of quantum mechanics that “doesn’t meddle with the technical aspects of the theory [but instead] reinterprets the fundamental terms of the theory and gives them new meaning” (3). The most important motivation for QBism, enthusiastically stated on the book’s cover, is that QBism provides “a way past quantum theory’s paradoxes and puzzles” such that much (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. (August 2017) Unbelievable similarities between R. E. Kastner’s ideas (Univ. of Maryland, USA) (2016) and my ideas (2002-2008).Gabriel Vacariu - 2017 - Dissertation, University of Bucharest
    The title of Kastner’s article is “Beyond Complementarity” (R. E. Kastner 6 March 2016 Foundations of Physics Group, University of Maryland, College Park, USA) -/- In this paper, there are quite many ideas similar to my ideas. The main ideas are the following: -/- - Bohr’s complementarity does not work: “’Complementarity’ cannot consistently account for the emergence of classicality from the quantum level (p. 1) - It is argued that ultimately this problem arises from Bohr’s implicit assumption that all quantum (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Semantic Epistemology Redux: Proof and Validity in Quantum Mechanics.Arnold Cusmariu - 2016 - Logos and Episteme 7 (3):287-303.
    Definitions I presented in a previous article as part of a semantic approach in epistemology assumed that the concept of derivability from standard logic held across all mathematical and scientific disciplines. The present article argues that this assumption is not true for quantum mechanics (QM) by showing that concepts of validity applicable to proofs in mathematics and in classical mechanics are inapplicable to proofs in QM. Because semantic epistemology must include this important theory, revision is necessary. The one I propose (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. (1 other version)Relativity Theory may not have the last Word on the Nature of Time: Quantum Theory and Probabilism.Nicholas Maxwell - 2016 - In Giancarlo Ghirardi & Shyam Wuppuluri (eds.), Space, Time and the Limits of Human Understanding. Cham: Imprint: Springer. pp. 109-124.
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  32. What Quantum Mechanics Doesn't Show.Justin P. McBrayer & Dugald Owen - 2016 - Teaching Philosophy 39 (2):163-176.
    Students often invoke quantum mechanics in class or papers to make philosophical points. This tendency has been encouraged by pop culture influences like the film What the Bleep do We Know? There is little merit to most of these putative implications. However, it is difficult for philosophy teachers unfamiliar with quantum mechanics to handle these supposed implications in a clear and careful way. This paper is a philosophy of science version of MythBusters. We offer a brief primer on the nature (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  33. Non-empirical arguments in physical theories.Francois-Igor Pris - 2016 - Lap Lambert.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  34. Qu'est-ce que la mécanique quantique ?Thomas Boyer-Kassem - 2015 - Vrin.
    La mécanique quantique est une théorie physique contemporaine réputée pour ses défis au sens commun et ses paradoxes. Depuis bientôt un siècle, plusieurs interprétations de la théorie ont été proposées par les physiciens et les philosophes, offrant des images quantiques du monde, ou des ontologies, radicalement différentes. L'existence d'un hasard fondamental, ou d'une multitude de mondes en-dehors du nôtre, dépend ainsi de l'interprétation adoptée. Après avoir discuté de la définition de l'interprétation d'une théorie physique, ce livre présente trois principales interprétations (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  35. Conservation of information and the foundations of quantum mechanics.Giulio Chiribella & Carlo Maria Scandolo - 2015 - EPJ Web of Conferences 95:03003.
    We review a recent approach to the foundations of quantum mechanics inspired by quantum information theory. The approach is based on a general framework, which allows one to address a large class of physical theories which share basic information-theoretic features. We first illustrate two very primitive features, expressed by the axioms of causality and purity-preservation, which are satisfied by both classical and quantum theory. We then discuss the axiom of purification, which expresses a strong version of the Conservation of Information (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Why Delayed Choice Experiments do NOT imply Retrocausality.David Ellerman - 2015 - Quantum Studies: Mathematics and Foundations 2 (2):183-199.
    There is a fallacy that is often involved in the interpretation of quantum experiments involving a certain type of separation such as the: double-slit experiments, which-way interferometer experiments, polarization analyzer experiments, Stern-Gerlach experiments, and quantum eraser experiments. The fallacy leads not only to flawed textbook accounts of these experiments but to flawed inferences about retrocausality in the context of delayed choice versions of separation experiments.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. A Unified Explanation of Quantum Phenomena? The Case for the Peer‐to‐Peer Simulation Hypothesis as an Interdisciplinary Research Program.Marcus Arvan - 2014 - Philosophical Forum 45 (4):433-446.
    In my 2013 article, “A New Theory of Free Will”, I argued that several serious hypotheses in philosophy and modern physics jointly entail that our reality is structurally identical to a peer-to-peer (P2P) networked computer simulation. The present paper outlines how quantum phenomena emerge naturally from the computational structure of a P2P simulation. §1 explains the P2P Hypothesis. §2 then sketches how the structure of any P2P simulation realizes quantum superposition and wave-function collapse (§2.1.), quantum indeterminacy (§2.2.), wave-particle duality (§2.3.), (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  38. (1 other version)Connecting Spin and Statistics in Quantum Mechanics.Arthur Jabs - 2014 - arXiv:0810.2399.
    The spin-statistics connection is derived in a simple manner under the postulates that the original and the exchange wave functions are simply added, and that the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin-component eigenfunction in the plane normal to the spin-quantization axis, is exchanged along with the other parameters. The spin factor (−1)2s belongs to the exchange wave function when this function is constructed so as to get the spinor ambiguity under control. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  39. (11 other versions)Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer might (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  40. Heidegger's Phenomenology and Quantum Physics (in Russian).Francois-Igor Pris - 2014 - Philosophical Investigations (Russian E-Journal) 4:46-67.
    В статье обосновывается, что квантовая механика является наукой нового типа, опровергающей метафизический реализм классической физики. Вводится понятие квантового концепта, результат применения которого не предопределён. Рассматриваются возможности прагматического «расстворения» à la Виттгенштейн проблемы измерения в философии квантовой механики при помощи использования виттгенштейновского понятия языковой игры и метафизического «решения» этой проблемы при помощи использования хайдеггеровского понятия Дазайн.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  41. (1 other version)Can quantum analogies help us to understand the process of thought? [2nd ed.].Paavo Pylkkanen - 2014 - Mind and Matter 12 (1):61-91.
    A number of researchers today make an appeal to quantum physics when trying to develop a satisfactory account of the mind, an appeal still felt to be controversial by many. Often these "quantum approaches" try to explain some well-known features of conscious experience (or mental processes more generally), thus using quantum physics to enrich the explanatory framework or explanans used in consciousness studies and cognitive science. This paper considers the less studied question of whether quantum physical intuitions could help us (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  42. Features, not waves!Gennaro Auletta - 2013 - In Isabella Tassani, Gino Tarozzi, Alessandro Afriat, Gennaro Auletta, Stefano Bordoni, Marco Buzzoni, Claudio Calosi, Vincenzo Fano, Alberto Cappi, Giovanni Macchia, Fabio Minazzi & Arcangelo Rossi (eds.), Oltre la fisica normale. Interpretazioni alternative e teorie non standard nella fisica moderna. ISONOMIA - Epistemologica. pp. 20-25.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Quantum no-go theorems and consciousness.Danko Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Against 3N-Dimensional Space.Bradley Monton - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. , US: Oxford University Press USA.
    I argue that space has three dimensions, and quantum mechanics does not show otherwise. Specifically, I argue that the mathematical wave function of quantum mechanics corresponds to a property that an N-particle system has in three-dimensional space.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   20 citations  
  45. What is The Reason to Use Clifford Algebra in Quantum Cognition? Part I: “It from Qubit” On The Possibility That the Amino Acids Can Discern Between Two Quantum Spin States.Elio Conte - 2012 - Neuroquantology 10 (3):561-565.
    Starting with 1985, we discovered the possible existence of electrons with net helicity in biomolecules as amino acids and their possibility to discern between the two quantum spin states. It is well known that the question of a possible fundamental role of quantum mechanics in biological matter constitutes still a long debate. In the last ten years we have given a rather complete quantum mechanical elaboration entirely based on Clifford algebra whose basic entities are isomorphic to the well known spin (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  46. Nagarjuna and Quantum physics.Christian Thomas Kohl (ed.) - 2012 - AV Akademikerverlag.
    Nagarjuna and Quantum physics Eastern and Western Modes of Thought Christian Thomas Kohl -/- Nagarjuna (2nd century) is known in the history of Buddhism by the keyword sunyata. This word is translated into English by the term emptiness. The translation and the traditional interpretations give the impression that Nagarjuna declares the objects as empty, illusionary, not real or not existing. Many questions could be asked at this point. What is the assertion made by this interpretation? Is it that nothing can (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  47. The Meaning of the Correspondence Principle.Francois-Igor Pris - 2012 - Analytica (6):18-35.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  48. (2 other versions)On the Logical Origins of Quantum Mechanics Demonstrated By Using Clifford Algebra: A Proof that Quantum Interference Arises in a Clifford Algebraic Formulation of Quantum Mechanics.Elio Conte - 2011 - Electronic Journal of Theoretical Physics 8 (25):109-126.
    We review a rough scheme of quantum mechanics using the Clifford algebra. Following the steps previously published in a paper by another author [31], we demonstrate that quantum interference arises in a Clifford algebraic formulation of quantum mechanics. In 1932 J. von Neumann showed that projection operators and, in particular, quantum density matrices can be interpreted as logical statements. In accord with a previously obtained result by V. F Orlov , in this paper we invert von Neumann’s result. Instead of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  49. How to spell out the epistemic conception of quantum states.Simon Friederich - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):149-157.
    The paper investigates the epistemic conception of quantum states---the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurement problem nor a conflict between quantum non-locality and relativity theory arises. Here it is argued (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  50. (2 other versions)Decision Making : A Quantum Mechanical Analysis Based On Time Evolution of Quantum Wave Function and of Quantum Probabilities during Perception and Cognition of Human Subjects.Elio Conte - 2009 - In Vaxjo University Press (ed.), Proceedings Congress Vaxjo University Conference on Quantum Mechanics. Vaxjo University.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 81