# Abstract

We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist a remarkable electrostatic self-interaction of its wave function, though the gravitational self-interaction is too weak to be detected presently. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus we conclude that the wave function cannot be a description of a physical field. In the second part of this paper, we further analyze the implications of these results for the main realistic interpretations of quantum mechanics, especially for de Broglie-Bohm theory. It has been argued that de Broglie-Bohm theory gives the same predictions as quantum mechanics by means of quantum equilibrium hypothesis. However, this equivalence is based on the premise that the wave function, regarded as a Ψ-field, has no mass and charge density distributions, which turns out to be wrong according to the above results. For a charged quantum system, both Ψ-field and Bohmian particle have charge density distribution. This then results in the existence of an electrostatic self-interaction of the field and an electromagnetic interaction between the field and Bohmian particle, which contradicts both the predictions of quantum mechanics and experimental observations. Therefore, de Broglie-Bohm theory as a realistic interpretation of quantum mechanics is probably wrong. Lastly, we suggest that the wave function is a description of some sort of ergodic motion (e.g. random discontinuous motion) of particles, and we also briefly analyze the implications of this suggestion for other realistic interpretations of quantum mechanics including many-worlds interpretation and dynamical collapse theories.