Not so distinctively mathematical explanations: topology and dynamical systems

Synthese 200 (3):1-40 (2022)
  Copy   BIBTEX

Abstract

So-called ‘distinctively mathematical explanations’ (DMEs) are said to explain physical phenomena, not in terms of contingent causal laws, but rather in terms of mathematical necessities that constrain the physical system in question. Lange argues that the existence of four or more equilibrium positions of any double pendulum has a DME. Here we refute both Lange’s claim itself and a strengthened and extended version of the claim that would pertain to any n-tuple pendulum system on the ground that such explanations are actually causal explanations in disguise and their associated modal conditionals are not general enough to explain the said features of such dynamical systems. We argue and show that if circumscribing the antecedent for a necessarily true conditional in such explanations involves making a causal analysis of the problem, then the resulting explanation is not distinctively mathematical or non-causal. Our argument generalises to other dynamical systems that may have purported DMEs analogous to the one proposed by Lange, and even to some other counterfactual accounts of non-causal explanation given by Reutlinger and Rice.

Author Profiles

Aditya Jha
Cambridge University
Douglas Ian Campbell
University of Canterbury

Analytics

Added to PP
2022-05-03

Downloads
548 (#42,952)

6 months
102 (#52,245)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?