Questioning the mechanistic-universe paradigm using chaotic systems

Abstract

We humans are natural-born engineers. As such, we model after machines not only isolated, naturally occurring systems, but also the basic laws of physics, sharing with machines a local-evolution-of-state `grammar'. However, previous work by the author casts doubt upon this mechanistic paradigm, suggesting that it is to blame for the stubbornness of many open problems in physics. Simple experiments are therefore proposed to identify `non-machines'. In one experiment, `non mechanistic correlations' in the spirit of Bell are sought in a pair of separated but previously coupled (macroscopic) chaotic systems. In another it is tested whether chaotic systems could fuzzily `remember their future' in the sense that a future binary perturbation applied to them could be inferred from their present behavior with probability$>1/2$. Chaotic systems are chosen as candidates because the long-time application of their (deterministic) mechanistic description is conceptually groundless: All scales are significant and mutually coupled in that regime, down to scales governed by QM, yet the quantum-classical transition remains inexplicable---if only due to the measurement problem. Similarly for non-deterministic chaotic systems, modeled as such purely for defying a short-time deterministic mechanistic description. Should a non mechanistic signature be found in such simple systems, the implications for science as a whole and life sciences in particular cannot be overstated.

Analytics

Added to PP
2023-09-14

Downloads
89 (#87,587)

6 months
59 (#70,735)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?