Normalisation for Bilateral Classical Logic with some Philosophical Remarks

Journal of Applied Logics 2 (8):531-556 (2021)
Download Edit this record How to cite View on PhilPapers
Abstract
Bilateralists hold that the meanings of the connectives are determined by rules of inference for their use in deductive reasoning with asserted and denied formulas. This paper presents two bilateral connectives comparable to Prior's tonk, for which, unlike for tonk, there are reduction steps for the removal of maximal formulas arising from introducing and eliminating formulas with those connectives as main operators. Adding either of them to bilateral classical logic results in an incoherent system. One way around this problem is to count formulas as maximal that are the conclusion of reductio and major premise of an elimination rule and to require their removability from deductions. The main part of the paper consists in a proof of a normalisation theorem for bilateral logic. The closing sections address philosophical concerns whether the proof provides a satisfactory solution to the problem at hand and confronts bilateralists with the dilemma that a bilateral notion of stability sits uneasily with the core bilateral thesis.
PhilPapers/Archive ID
KRBNFB
Upload history
First archival date: 2021-02-18
Latest version: 2 (2021-02-20)
View other versions
Added to PP index
2021-02-18

Total views
48 ( #53,544 of 2,439,597 )

Recent downloads (6 months)
48 ( #14,395 of 2,439,597 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.