Abstract
During the last decades, many cognitive architectures (CAs) have been realized adopting different assumptions about the organization and the representation of their knowledge level. Some of them (e.g. SOAR [35]) adopt a classical symbolic approach, some (e.g. LEABRA[ 48]) are based on a purely connectionist model, while others (e.g. CLARION [59]) adopt a hybrid approach combining connectionist and symbolic representational levels. Additionally, some attempts (e.g. biSOAR) trying to extend the representational capacities of CAs by integrating diagrammatical representations and reasoning are also available [34]. In this paper we propose a reflection on the role that Conceptual Spaces, a framework
developed by Peter G¨ardenfors [24] more than fifteen years ago, can play in the current development of the Knowledge Level in Cognitive Systems and Architectures. In particular, we claim that Conceptual Spaces offer a lingua franca that allows to unify and generalize many aspects of the symbolic, sub-symbolic and diagrammatic approaches (by overcoming some of their typical problems) and to integrate them on a common ground. In doing so we extend and detail some of the arguments explored by G¨ardenfors [23] for defending the need of a conceptual, intermediate, representation level between the symbolic and the sub-symbolic one. In particular we focus on the advantages offered by Conceptual
Spaces (w.r.t. symbolic and sub-symbolic approaches) in dealing with the problem of compositionality of representations based on typicality traits. Additionally, we argue that Conceptual Spaces could offer a unifying framework for interpreting many kinds of diagrammatic and analogical representations.
As a consequence, their adoption could also favor the integration of diagrammatical representation and reasoning in CAs.