View topic on PhilPapers for more information
Related categories

11 found
Order:
More results on PhilPapers
  1. From Biological Synapses to "Intelligent" Robots.Birgitta Dresp-Langley - 2022 - Electronics 11:1-28.
    This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on self-organization is brought forward. Learning without (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Human Symmetry Uncertainty Detected by a Self-Organizing Neural Network Map.Birgitta Dresp-Langley - 2021 - Symmetry 13:299.
    Symmetry in biological and physical systems is a product of self-organization driven by evolutionary processes, or mechanical systems under constraints. Symmetry-based feature extraction or representation by neural networks may unravel the most informative contents in large image databases. Despite significant achievements of artificial intelligence in recognition and classification of regular patterns, the problem of uncertainty remains a major challenge in ambiguous data. In this study, we present an artificial neural network that detects symmetry uncertainty states in human observers. To this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. The Quantization Error in a Self-Organizing Map as a Contrast and Color Specific Indicator of Single-Pixel Change in Large Random Patterns.Birgitta Dresp-Langley - 2019 - Neural Networks 120:116-128..
    The quantization error in a fixed-size Self-Organizing Map (SOM) with unsupervised winner-take-all learning has previously been used successfully to detect, in minimal computation time, highly meaningful changes across images in medical time series and in time series of satellite images. Here, the functional properties of the quantization error in SOM are explored further to show that the metric is capable of reliably discriminating between the finest differences in local contrast intensities and contrast signs. While this capability of the QE is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Conceptual Spaces for Cognitive Architectures: A Lingua Franca for Different Levels of Representation.Antonio Lieto, Antonio Chella & Marcello Frixione - 2017 - Biologically Inspired Cognitive Architectures 19:1-9.
    During the last decades, many cognitive architectures (CAs) have been realized adopting different assumptions about the organization and the representation of their knowledge level. Some of them (e.g. SOAR [35]) adopt a classical symbolic approach, some (e.g. LEABRA[ 48]) are based on a purely connectionist model, while others (e.g. CLARION [59]) adopt a hybrid approach combining connectionist and symbolic representational levels. Additionally, some attempts (e.g. biSOAR) trying to extend the representational capacities of CAs by integrating diagrammatical representations and reasoning are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  5. There’s Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy.Francesco Berto, Jacopo Tagliabue & Gabriele Rossi - 2016 - Minds and Machines 26 (4):341-357.
    “There’s Plenty of Room at the Bottom”, said the title of Richard Feynman’s 1959 seminal conference at the California Institute of Technology. Fifty years on, nanotechnologies have led computer scientists to pay close attention to the links between physical reality and information processing. Not all the physical requirements of optimal computation are captured by traditional models—one still largely missing is reversibility. The dynamic laws of physics are reversible at microphysical level, distinct initial states of a system leading to distinct final (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Robot Pain.Simon van Rysewyk - 2014 - International Journal of Synthetic Emotions 4 (2):22-33.
    Functionalism of robot pain claims that what is definitive of robot pain is functional role, defined as the causal relations pain has to noxious stimuli, behavior and other subjective states. Here, I propose that the only way to theorize role-functionalism of robot pain is in terms of type-identity theory. I argue that what makes a state pain for a neuro-robot at a time is the functional role it has in the robot at the time, and this state is type identical (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   4 citations  
  7. The Waning of Materialism. Edited by R. Koons and G. Bealer. (OUP 2010). [REVIEW]David Yates - 2012 - Philosophical Quarterly 62 (247):420-422.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Bayesian Models and Simulations in Cognitive Science.Giuseppe Boccignone & Roberto Cordeschi - 2007 - Workshop Models and Simulations 2, Tillburg, NL.
    Bayesian models can be related to cognitive processes in a variety of ways that can be usefully understood in terms of Marr's distinction among three levels of explanation: computational, algorithmic and implementation. In this note, we discuss how an integrated probabilistic account of the different levels of explanation in cognitive science is resulting, at least for the current research practice, in a sort of unpredicted epistemological shift with respect to Marr's original proposal.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Varieties of Representation in Evolved and Embodied Neural Networks.Pete Mandik - 2003 - Biology and Philosophy 18 (1):95-130.
    In this paper I discuss one of the key issuesin the philosophy of neuroscience:neurosemantics. The project of neurosemanticsinvolves explaining what it means for states ofneurons and neural systems to haverepresentational contents. Neurosemantics thusinvolves issues of common concern between thephilosophy of neuroscience and philosophy ofmind. I discuss a problem that arises foraccounts of representational content that Icall ``the economy problem'': the problem ofshowing that a candidate theory of mentalrepresentation can bear the work requiredwithin in the causal economy of a mind and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10. Knowledge Bases and Neural Network Synthesis.Todd R. Davies - 1991 - In Hozumi Tanaka (ed.), Artificial Intelligence in the Pacific Rim: Proceedings of the Pacific Rim International Conference on Artificial Intelligence. IOS Press. pp. 717-722.
    We describe and try to motivate our project to build systems using both a knowledge based and a neural network approach. These two approaches are used at different stages in the solution of a problem, instead of using knowledge bases exclusively on some problems, and neural nets exclusively on others. The knowledge base (KB) is defined first in a declarative, symbolic language that is easy to use. It is then compiled into an efficient neural network (NN) representation, run, and the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Book Review of "The Embodied Mind: Cognitive Science and Human Experience". [REVIEW]Anand Rangarajan - manuscript
    This is an in-depth review of "The Embodied Mind: Cognitive Science and Human Experience" by Francisco Varela, Evan Thompson and Eleanor Rosch.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark