# Abstract

In earlier papers (Lindström & Rabinowicz, 1989. 1990), we proposed a generalization of the AGM approach to belief revision. Our proposal was to view belief revision as a relation rather thanas a function on theories (or belief sets). The idea was to allow for there being several equally reasonable revisions of a theory with a given proposition.
In the present paper, we show that the relational approach is the natural
result of generalizing in a certain way an approach to belief revision
due to Adam Grove. In his (1988) paper, Grove presents two closely
related modelings of functional belief revision, one in terms of a family of "spheres" around the agent's theory G and the other in terms of an epistemic entrenchment ordering of propositions. The "sphere"-terminology is natural when one looks upon theories and propositions as being represented by sets of possible worlds. Grove's spheres
may be thought of as possible "fallback" theories relative to the agent's original theory: theories that he may reach by deleting propositions that are not "sufficiently" entrenched (according to standards of sufficient entrenchment of varying stringency). To put it differently, fallbacks are theories that are closed upwards under entrenchment The entrenchment ordering can be recovered from the family of fallbacks by the definition: A is at least as entrenched as B iff A belongs to every fallback to which B belongs. To revise a theory T with a proposition A, we go to the smallest sphere that contain A-worlds and intersect it with A.
The relational notion of belief revision that we are interested in, results
from weakening epistemic entrenchment by not assuming it to be connected. I.e., we want to allow that some propositions may be incomparable
with respect to epistemic entrenchment. As a result, the family of fallbacks around a given theory will no longer have to be nested. This change opens up the possibility for several different ways of revising a theory with a given proposition.