Abstract
In this paper I consider two paradoxes that arise in connection with the concept of demonstrability, or absolute provability. I assume—for the sake of the argument—that there is an intuitive notion of demonstrability, which should not be conflated with the concept of formal deducibility in a (formal) system or the relativized concept of provability from certain axioms. Demonstrability is an epistemic concept: the rough idea is that a sentence is demonstrable if it is provable from knowable basic (“self-evident”) premises by means of simple logical steps. A statement that is demonstrable is also knowable and a statement that is actually demonstrated is known to be true. By casting doubt upon apparently central principles governing the concept of demonstrability, the paradoxes of demonstrability presented here tend to undermine the concept itself—or at least our understanding of it. As long as we cannot find a diagnosis and a cure for the paradoxes, it seems that the coherence of the concepts of demonstrability and demonstrable knowledge are put in question. There are of course ways of putting the paradoxes in quarantine, for example by imposing a hierarchy of languages a` la Tarski, or a ramified hierarchy of propositions and propositional functions a` la Russell. These measures, however, helpful as they may be in avoiding contradictions, do not seem to solve the underlying conceptual problems. Although structurally similar to the semantic paradoxes, the paradoxes discussed in this paper involve epistemic notions: “demonstrability”, “knowability”, “knowledge”... These notions are “factive” (e.g., if A is demonstrable, then A is true), but similar paradoxes arise in connection with “nonfactive” notions like “believes”, “says”, “asserts”.3 There is no consensus in the literature concerning the analysis of the notions involved—often referred to as “propositional attitudes”—or concerning the treatment of the paradoxes they give rise to.