# Abstract

In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, invoking even religious language: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve”. The possible existence of such a unique match between mathematics and physics has been extensively discussed by philosophers and historians of mathematics. Whatever the merits of this claim are, a further question can be posed with regard to mathematization in science more generally: What happens when we leave the area of theories and laws of physics and move over to the realm of mathematical modeling in interdisciplinary contexts? Namely, in modeling the phenomena specific to biology or economics, for instance, scientists often use methods that have their origin in physics. How is this kind of mathematical modeling justified?