11 found
Order:
  1. Modelling as Indirect Representation? The Lotka–Volterra Model Revisited.Tarja Knuuttila & Andrea Loettgers - 2017 - British Journal for the Philosophy of Science 68 (4):1007-1036.
    ABSTRACT Is there something specific about modelling that distinguishes it from many other theoretical endeavours? We consider Michael Weisberg’s thesis that modelling is a form of indirect representation through a close examination of the historical roots of the Lotka–Volterra model. While Weisberg discusses only Volterra’s work, we also study Lotka’s very different design of the Lotka–Volterra model. We will argue that while there are elements of indirect representation in both Volterra’s and Lotka’s modelling approaches, they are largely due to two (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  2. Model templates within and between disciplines: from magnets to gases – and socio-economic systems.Tarja Knuuttila & Andrea Loettgers - 2016 - European Journal for Philosophy of Science 6 (3):377-400.
    One striking feature of the contemporary modelling practice is its interdisciplinary nature. The same equation forms, and mathematical and computational methods, are used across different disciplines, as well as within the same discipline. Are there, then, differences between intra- and interdisciplinary transfer, and can the comparison between the two provide more insight on the challenges of interdisciplinary theoretical work? We will study the development and various uses of the Ising model within physics, contrasting them to its applications to socio-economic systems. (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  3. Varieties of noise: Analogical reasoning in synthetic biology.Tarja Knuuttila & Andrea Loettgers - 2014 - Studies in History and Philosophy of Science Part A 48:76-88.
    The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  4. (Un)Easily Possible Synthetic Biology.Tarja Knuuttila & Andrea Loettgers - 2022 - Philosophy of Science (5):1-14.
    Synthetic biology has a strong modal dimension that is part and parcel of its engineering agenda. In turning hypothetical biological designs into actual synthetic constructs, synthetic biologists reach towards potential biology instead of concentrating on naturally evolved organisms. We analyze synthetic biology’s goal of making biology easier to engineer through the combinatorial theory of possibility, which reduces possibility to combinations of individuals and their attributes in the actual world. While the last decades of synthetic biology explorations have shown biology to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Magnetized Memories: Analogies and Templates in Model Transfer.Tarja Knuuttila & Andrea Loettgers - 2020 - In S. Holm & M. Serban (eds.), Biology: Living Machines? Routledge. pp. 123-140.
    One striking feature of the contemporary modeling practice is its interdisciplinarity: the same function forms and equations, and mathematical and computational methods are being transferred across disciplinary boundaries. Within philosophy of science this interdisciplinary dimension of modeling has been addressed by both analogy and template-based approaches that have proceeded separately from each other. We argue that a more fully-blown account of model transfer needs both perspectives. We examine analogical reasoning and template application through a detailed case study on the transfer (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  6. Synthetic Modeling and Mechanistic Account: Material Recombination and Beyond.Tarja Knuuttila & Andrea Loettgers - 2013 - Philosophy of Science 80 (5):874-885.
    Recently, Bechtel and Abrahamsen have argued that mathematical models study the dynamics of mechanisms by recomposing the components and their operations into an appropriately organized system. We will study this claim through the practice of combinational modeling in circadian clock research. In combinational modeling, experiments on model organisms and mathematical/computational models are combined with a new type of model—a synthetic model. We argue that the strategy of recomposition is more complicated than what Bechtel and Abrahamsen indicate. Moreover, synthetic modeling as (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  7. What are definitions of life good for? Transdisciplinary and other definitions in astrobiology.Tarja Knuuttila & Andrea Loettgers - 2017 - Biology and Philosophy 32 (6):1185-1203.
    The attempt to define life has gained new momentum in the wake of novel fields such as synthetic biology, astrobiology, and artificial life. In a series of articles, Cleland, Chyba, and Machery claim that definitions of life seek to provide necessary and sufficient conditions for applying the concept of life—something that such definitions cannot, and should not do. We argue that this criticism is largely unwarranted. Cleland, Chyba, and Machery approach definitions of life as classifying devices, thereby neglecting their other (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  8. Magnets, spins, and neurons: The dissemination of model templates across disciplines.Tarja Knuuttila & Andrea Loettgers - 2014 - The Monist 97 (3):280-300.
    One of the most conspicuous features of contemporary modeling practices is the dissemination of mathematical and computational methods across disciplinary boundaries. We study this process through two applications of the Ising model: the Sherrington-Kirkpatrick model of spin glasses and the Hopfield model of associative memory. The Hopfield model successfully transferred some basic ideas and mathematical methods originally developed within the study of magnetic systems to the field of neuroscience. As an analytical resource we use Paul Humphreys's discussion of computational and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  9. Contrasting Cases: The Lotka-Volterra Model Times Three.Tarja Knuuttila & Andrea Loettgers - 2016 - Boston Studies in the Philosophy of Science 319:151-178.
    How do philosophers of science make use of historical case studies? Are their accounts of historical cases purpose-built and lacking in evidential strength as a result of putting forth and discussing philosophical positions? We will study these questions through the examination of three different philosophical case studies. All of them focus on modeling and on Vito Volterra, contrasting his work to that of other theoreticians. We argue that the worries concerning the evidential role of historical case studies in philosophy are (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  10. Biological Control Variously Materialized: Modeling, Experimentation and Exploration in Multiple Media.Tarja Knuuttila & Andrea Loettgers - 2021 - Perspectives on Science 29 (4):468-492.
    This paper examines two parallel discussions of scientific modeling which have invoked experimentation in addressing the role of models in scientific inquiry. One side discusses the experimental character of models, whereas the other focuses on their exploratory uses. Although both relate modeling to experimentation, they do so differently. The former has considered the similarities and differences between models and experiments, addressing, in particular, the epistemic value of materiality. By contrast, the focus on exploratory modeling has highlighted the various kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Mathematization in Synthetic Biology: Analogies, Templates, and Fictions.Andrea Loettgers & Tarja Knuuttila - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, invoking even religious language: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve”. The possible existence of such a unique match between mathematics and physics has been extensively discussed by philosophers and historians of mathematics. Whatever the merits (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations