Abstract
This article concerns the psychology of the paradoxical Two Envelope Problem. The goal is to find instructive variants of the envelope switching problem that are capable of clear-cut resolution, while still retaining paradoxical features. By relocating the original problem into different contexts involving commutes and playing cards the reader is presented with a succession of resolved paradoxes that reduce the confusion arising from the parent paradox. The goal is to reduce confusion by understanding how we sometimes misread mathematical statements; or, to completely avoid confusion, either by reforming language, or adopting an unambiguous notation for switching problems. This article also suggests that an illusion close in character to the figure/ground illusion hampers our understanding of switching problems in general and helps account for the intense confusion that switching problems sometimes generate.