Abstract
According to orthodox quantum mechanics, state vectors change in two incompatible ways: "deterministically" in accordance with Schroedinger's time-dependent equation, and probabilistically if and only if a measurement is made. It is argued here that the problem of measurement arises because the precise mutually exclusive conditions for these two types of transitions to occur are not specified within orthodox quantum mechanics. Fundamentally, this is due to an inevitable ambiguity in the notion of "meawurement" itself. Hence, if the problem of measurement is to be resolved, a new, fully objective version of quantjm mechanics needs to be developed which does not incorporate the notion of measurement in its basic postuolates at all.