Gaps, Gluts, and Theoretical Equivalence


When are two formal theories of broadly logical concepts, such as truth, equivalent? The paper investigates a case study, involving two well-known variants Kripke-Feferman truth. The first, KF+CONS, features a consistent but partial truth predicate. The second, KF+COMP, an inconsistent but complete truth predicate. It is well-known that the two truth predicates are dual to each other. We show that this duality reveals a much stricter correspondence between the two theories: they are intertraslatable. Intertranslatability under natural assumptions coincides with definitional equivalence, and is arguably the strictest notion of theoretical equivalence different from logical equivalence. The case of KF+CONS and KF+COMP raises a puzzle: the two theories can be proved to be strictly related, yet they appear to embody remarkably different conceptions of truth. We discuss the significance of the result for the broader debate on formal criteria of conceptual reducibility for theories of truth.

Author's Profile

Carlo Nicolai
King's College London


Added to PP

291 (#49,046)

6 months
67 (#57,025)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?