“Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”

Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7 (2021)
  Copy   BIBTEX

Abstract

The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked to the distinction of classical (Maxwell-Boltzmann) versus quantum (either Fermi-Dirac or Bose-Einstein) statistics. The latter can be generalized to classes of wave functions (“empty” qubits) and represented exhaustively in Hilbert arithmetic therefore connectible to the foundations of mathematics, more precisely, to the interrelations of propositional logic and set theory sharing the structure of Boolean algebra and two anti-isometric copies of Peano arithmetic.

Author's Profile

Vasil Penchev
Bulgarian Academy of Sciences

Analytics

Added to PP
2021-07-22

Downloads
334 (#67,314)

6 months
129 (#35,208)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?