View topic on PhilPapers for more information
Related categories

69 found
Order:
More results on PhilPapers
1 — 50 / 69
  1. How Typical! An Epistemological Analysis of Typicality in Statistical Mechanics.Massimiliano Badino - manuscript
    The recent use of typicality in statistical mechanics for foundational purposes has stirred an important debate involving both philosophers and physicists. While this debate customarily focuses on technical issues, in this paper I try to approach the problem from an epistemological angle. The discussion is driven by two questions: (1) What does typicality add to the concept of measure? (2) What kind of explanation, if any, does typicality yield? By distinguishing the notions of `typicality-as-vast-majority' and `typicality-as-best-exemplar', I argue that the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Strong Determinism.Eddy Keming Chen - manuscript
    A strongly deterministic theory of physics is one that permits exactly one possible history of the universe. In the words of Penrose (1989), "it is not just a matter of the future being determined by the past; the entire history of the universe is fixed, according to some precise mathematical scheme, for all time.” Such an extraordinary feature may appear unattainable in any realistic and simple theory of physics. In this paper, I propose a definition of strong determinism and contrast (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Arrow of Time and Observer Information.Andreas Henriksson - manuscript
    In this article, the arrow of time as it appears in the statistical interpretation of the second law of thermodynamics is suggested to be of no relevance in understanding the true origin for the directionality of time. To arrive at this point of view, the theory of statistical mechanics is revisited, and restated in terms of the information content possessed by an observer of the system. By doing so, the statement that the arrow of time is due to the tendency (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Feyerabend on the Quantum Theory of Measurement: A Reassessment.Daniel Kuby & Patrick Fraser - manuscript
    In 1957, Feyerabend delivered a paper titled “On the quantum‐theory of measurement” at the Colston Research Symposium in Bristol to sketch a completion of von Neumann’s measurement scheme without collapse, using only unitary quantum dynamics and well‐motivated statistical assumptions about macroscopic quantum systems. Feyerabend’s paper has been recognized as an early contribution to quantum measurement, anticipating certain aspects of decoherence. Our paper reassesses the physical and philosophical content of Feyerabend’s contribution, detailing the technical steps as well as its overall philosophical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. The Empirical Content of the Epistemic Asymmetry.Douglas Kutach - manuscript
    I conduct an empirical analysis of the temporally asymmetric character of our epistemic access to the world by providing an experimental scheme whose results represent the core empirical content of the epistemic asymmetry. I augment this empirical content by formulating a gedanken experiment inspired by a proposal from David Albert. This second experiment cannot be conducted using any technology that is likely to be developed in the foreseeable future, but the expected results help us to state an important constraint on (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. Matters of Time Directionality in Classical and Quantum Physics.Jean-Christophe Lindner - manuscript
    This report offers a modern perspective on the question of time directionality as it arises in a classical and quantum mechanical context, based on key developments in the field of gravitational physics. Important clarifications are achieved regarding, in particular, the concepts of time reversal, negative energy and causality. From this analysis emerges an improved understanding of the general relativistic concept of stress-energy of matter as being a manifestation of local variations in the energy density of zero-point vacuum fluctuations. Based on (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Termodinamica: Legi, Concepte, Sisteme, Stări.Sfetcu Nicolae - manuscript
    Termodinamica se ocupă cu studiul energiei, a conversiilor sale între diferite forme, cum ar fi căldura, și capacitatea energiei de a produce lucru mecanic. Ea este strâns legată de mecanica statistică, din care pot fi derivate multe relații termodinamice. Se poate argumenta că termodinamica a fost greșit denumită astfel întrucât aceasta nu se referă de fapt la rate de schimbare ca atare și, prin urmare, ar fi fost probabil mai corect ca domeniul să se denumească termostatica. Termodinamica se referă la (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  8. Why Gravity is Not an Entropic Force.Shan Gao - 2010
    The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Bridging Conceptual Gaps: The Kolmogorov-Sinai Entropy.Massimiliano Badino - forthcoming - Isonomía. Revista de Teoría y Filosofía Del Derecho.
    The Kolmogorov-Sinai entropy is a fairly exotic mathematical concept which has recently aroused some interest on the philosophers’ part. The most salient trait of this concept is its working as a junction between such diverse ambits as statistical mechanics, information theory and algorithm theory. In this paper I argue that, in order to understand this very special feature of the Kolmogorov-Sinai entropy, is essential to reconstruct its genealogy. Somewhat surprisingly, this story takes us as far back as the beginning of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. OF WEIGHTING AND COUNTING: STATISTICS AND ONTOLOGY IN THE OLD QUANTUM THEORY.Massimiliano Badino - forthcoming - In Oxford Handbook of the History of Interpretations and Foundations of Quantum Mechanics. Oxford, Regno Unito:
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. The Past Hypothesis and the Nature of Physical Laws.Eddy Keming Chen - forthcoming - In Barry Loewer, Eric Winsberg & Brad Weslake (eds.), Time's Arrows and the Probability Structure of the World. Harvard University Press.
    If the Past Hypothesis underlies the arrows of time, what is the status of the Past Hypothesis? In this paper, I examine the role of the Past Hypothesis in the Boltzmannian account and defend the view that the Past Hypothesis is a candidate fundamental law of nature. Such a view is known to be compatible with Humeanism about laws, but as I argue it is also supported by a minimal non-Humean "governing'' view. Some worries arise from the non-dynamical and time-dependent (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   7 citations  
  12. Degeneration and Entropy.Eugene Chua - forthcoming - Kriterion - Journal of Philosophy.
    [Accepted for publication in Lakatos's Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, special issue of Kriterion: Journal of Philosophy. Edited by S. Nagler, H. Pilin, and D. Sarikaya.] Lakatos’s analysis of progress and degeneration in the Methodology of Scientific Research Programmes is well-known. Less known, however, are his thoughts on degeneration in Proofs and Refutations. I propose and motivate two new criteria for degeneration based on the discussion in Proofs and Refutations (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Generalizing the Problem of Humean Undermining.Heather Demarest & Elizabeth Miller - forthcoming - In Christian Loew, Siegfried Jaag & Michael Townsen Hicks (eds.), Humean Laws for Human Agents. Oxford: Oxford UP.
    For Humeans, many facts—even ones intuitively “about” particular, localized macroscopic parts of the world—turn out to depend on surprisingly global fundamental bases. We investigate some counterintuitive consequences of this picture. Many counterfactuals whose antecedents describe intuitively localized, non-actual states of affairs nevertheless end up involving wide-ranging implications for the global, embedding Humean mosaic. The case of self-undermining chances is a familiar example of this. We examine that example in detail and argue that popular existing strategies such as “holding the laws (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  14. Filosofía de la Física Estadística y la Termodinámica.Aldo Filomeno - forthcoming - Enciclopedia de la Sociedad Española de Filosofía Analítica.
    En esta entrada se mencionan las principales cuestiones en los fundamentos de la mecánica estadı́stica y la termodinámica, y las cuestiones filosóficas en las que repercuten estas áreas de la fı́sica. Al final se añaden lecturas recomendadas, enfatizando las traducidas al español.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  15. The Meta-Reversibility Objection.Christopher J. G. Meacham - forthcoming - In Barry Loewer, Brad Weslake & Eric Winsberg (eds.), Time's Arrow and the Probability Structure of the World.
    One popular approach to statistical mechanics understands statistical mechanical probabilities as measures of rational indifference. Naive formulations of this ``indifference approach'' face reversibility worries - while they yield the right prescriptions regarding future events, they yield the wrong prescriptions regarding past events. This paper begins by showing how the indifference approach can overcome the standard reversibility worries by appealing to the Past Hypothesis. But, the paper argues, positing a Past Hypothesis doesn't free the indifference approach from all reversibility worries. For (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Atheistic Induction by Boltzmann Brains.Bradley Monton - forthcoming - In Jerry Walls & Trent Dougherty (eds.), Two Dozen (or so) Arguments for God: The Plantinga Project. Oxford University Press.
    I present a new thermodynamic argument for the existence of God. Naturalistic physics provides evidence for the failure of induction, because it provides evidence that the past is not at all what you think it is, and your existence is just a momentary fluctuation. The fact that you are not a momentary fluctuation thus provides evidence for the existence of God – God would ensure that the past is roughly what we think it is, and you have been in existence (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. From Quantum Entanglement to Spatiotemporal Distance.Alyssa Ney - forthcoming - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime. Oxford: Oxford University Press.
    Within the field of quantum gravity, there is an influential research program developing the connection between quantum entanglement and spatiotemporal distance. Quantum information theory gives us highly refined tools for quantifying quantum entanglement such as the entanglement entropy. Through a series of well-confirmed results, it has been shown how these facts about the entanglement entropy of component systems may be connected to facts about spatiotemporal distance. Physicists are seeing these results as yielding promising methods for better understanding the emergence of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  18. From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the quantum state in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  19. Fundamental Nomic Vagueness.Eddy Keming Chen - 2022 - Philosophical Review 131 (1):1-49.
    If there are fundamental laws of nature, can they fail to be exact? In this paper, I consider the possibility that some fundamental laws are vague. I call this phenomenon 'fundamental nomic vagueness.' I characterize fundamental nomic vagueness as the existence of borderline lawful worlds and the presence of several other accompanying features. Under certain assumptions, such vagueness prevents the fundamental physical theory from being completely expressible in the mathematical language. Moreover, I suggest that such vagueness can be regarded as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  20. Conventionalism About Time Direction.Matt Farr - 2022 - Synthese 200 (1):1-21.
    In what sense is the direction of time a matter of convention? In 'The Direction of Time', Hans Reichenbach makes brief reference to parallels between his views about the status of time’s direction and his conventionalism about geometry. In this article, I: (1) provide a conventionalist account of time direction motivated by a number of Reichenbach’s claims in the book; (2) show how forwards and backwards time can give equivalent descriptions of the world despite the former being the ‘natural’ direction (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. A Multi-Wavelength Data Analysis with Multi-Mission Space Telescopes.Yang I. Pachankis - 2022 - International Journal of Innovative Science and Research Technology 7 (1):701-708.
    The article summarizes the software tool on astrophysical analysis with multi-wavelength space telescope data. It recaps the evidence analysis conducted on the Kerr-Newman black hole (KNBH). It was written prior to the article Research on the Kerr-Newman Black Hole in M82 Confirms Black Hole and White Hole Juxtapose not soon after the experiment. The conducted analysis suggested Hawking radiation is caused by the movement of ergosurfaces of the BH and serves as the primal evidence for black hole and white hole (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   18 citations  
  23. Does von Neumann Entropy Correspond to Thermodynamic Entropy?Eugene Y. S. Chua - 2021 - Philosophy of Science 88 (1):145-168.
    Conventional wisdom holds that the von Neumann entropy corresponds to thermodynamic entropy, but Hemmo and Shenker (2006) have recently argued against this view by attacking von Neumann's (1955) argument. I argue that Hemmo and Shenker's arguments fail due to several misunderstandings: about statistical-mechanical and thermodynamic domains of applicability, about the nature of mixed states, and about the role of approximations in physics. As a result, their arguments fail in all cases: in the single-particle case, the finite particles case, and the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. What’s so Special About Initial Conditions? Understanding the Past Hypothesis in Directionless Time.Matt Farr - 2021 - In Yemima Ben-Menahem (ed.), Rethinking the Concept of Laws of Nature: Natural order in the Light of Contemporary Science. Springer.
    It is often said that the world is explained by laws of nature together with initial conditions. But does that mean initial conditions don’t require further explanation? And does the explanatory role played by initial conditions entail or require that time has a preferred direction? This chapter looks at the use of the ‘initialness defence’ in physics, the idea that initial conditions are intrinsically special in that they don’t require further explanation, unlike the state of the world at other times. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Typicality of Dynamics and the Laws of Nature.Aldo Filomeno - 2021 - In Cristian Soto (ed.), Current Debates in Philosophy of Science: In Honor of Roberto Torretti. Synthese Library Series, Springer.
    Certain results, most famously in classical statistical mechanics and complex systems, but also in quantum mechanics and high-energy physics, yield a coarse-grained stable statistical pattern in the long run. The explanation of these results shares a common structure: the results hold for a 'typical' dynamics, that is, for most of the underlying dynamics. In this paper I argue that the structure of the explanation of these results might shed some light --a different light-- on philosophical debates on the laws of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Historical and Conceptual Foundations of Information Physics.Anta Javier - 2021 - Dissertation, Universitat de Barcelona
    The main objective of this dissertation is to philosophically assess how the use of informational concepts in the field of classical thermostatistical physics has historically evolved from the late 1940s to the present day. I will first analyze in depth the main notions that form the conceptual basis on which 'informational physics' historically unfolded, encompassing (i) different entropy, probability and information notions, (ii) their multiple interpretative variations, and (iii) the formal, numerical and semantic-interpretative relationships among them. In the following, I (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. How Anti-Humeans Can Embrace a Thermodynamic Reduction of Time’s Causal Arrow.Eli I. Lichtenstein - 2021 - Philosophy of Science 88 (5):1161-1171.
    Some argue that time’s causal arrow is grounded in an underlying thermodynamic asymmetry. Often, this is tied to Humean skepticism that causes produce their effects, in any robust sense of ‘produce’. Conversely, those who advocate stronger notions of natural necessity often reject thermodynamic reductions of time’s causal arrow. Against these traditional pairings, I argue that ‘reduction-plus-production’ is coherent. Reductionists looking to invoke robust production can insist that there are metaphysical constraints on the signs of objects’ velocities in any state, given (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. “Two Bits Less” After Quantum-Information Conservation and Their Interpretation as “Distinguishability / Indistinguishability” and “Classical / Quantum”.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7.
    The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked to the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. Explaining Universality: Infinite Limit Systems in the Renormalization Group Method.Jingyi Wu - 2021 - Synthese (5-6):14897-14930.
    I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Calling for explanation: the case of the thermodynamic past state.Dan Baras & Orly Shenker - 2020 - European Journal for Philosophy of Science 10 (3):1-20.
    Philosophers of physics have long debated whether the Past State of low entropy of our universe calls for explanation. What is meant by “calls for explanation”? In this article we analyze this notion, distinguishing between several possible meanings that may be attached to it. Taking the debate around the Past State as a case study, we show how our analysis of what “calling for explanation” might mean can contribute to clarifying the debate and perhaps to settling it, thus demonstrating the (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   7 citations  
  31. Welcome to the Fuzzy-Verse.Eddy Keming Chen - 2020 - New Scientist 247 (3298):36-40.
    We expect the laws of nature that describe the universe to be exact, but what if that isn't true? In this popular science article, I discuss the possibility that some candidate fundamental laws of nature, such as the Past Hypothesis, may be vague. This possibility is in conflict with the idea that the fundamental laws of nature can always and faithfully be described by classical mathematics. -/- [Bibliographic note: this article is featured on the magazine website under a different title (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  33. C‐Theories of Time: On the Adirectionality of Time.Matt Farr - 2020 - Philosophy Compass (12):1-17.
    “The universe is expanding, not contracting.” Many statements of this form appear unambiguously true; after all, the discovery of the universe’s expansion is one of the great triumphs of empirical science. However, the statement is time-directed: the universe expands towards what we call the future; it contracts towards the past. If we deny that time has a direction, should we also deny that the universe is really expanding? This article draws together and discusses what I call ‘C-theories’ of time — (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  34. An Alternative Interpretation of Statistical Mechanics.C. D. McCoy - 2020 - Erkenntnis 85 (1):1-21.
    In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  35. Interpretive Analogies Between Quantum and Statistical Mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations  
  36. Eternal Worlds and the Best System Account of Laws.Ryan A. Olsen & Christopher Meacham - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific.
    In this paper we apply the popular Best System Account of laws to typical eternal worlds – both classical eternal worlds and eternal worlds of the kind posited by popular contemporary cosmological theories. We show that, according to the Best System Account, such worlds will have no laws that meaningfully constrain boundary conditions. It’s generally thought that lawful constraints on boundary conditions are required to avoid skeptical arguments. Thus the lack of such laws given the Best System Account may seem (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  37. Reality in a Few Thermodynamic Reference Frames: Statistical Thermodynamics From Boltzmann Via Gibbs to Einstein.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-14.
    The success of a few theories in statistical thermodynamics can be correlated with their selectivity to reality. These are the theories of Boltzmann, Gibbs, and Einstein. The starting point is Carnot’s theory, which defines implicitly the general selection of reality relevant to thermodynamics. The three other theories share this selection, but specify it further in detail. Each of them separates a few main aspects within the scope of the implicit thermodynamic reality. Their success grounds on that selection. Those aspects can (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  38. The Temporal Foundation of the Principle of Maximal Entropy.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (11):1-3.
    The principle of maximal entropy (further abbreviated as “MaxEnt”) can be founded on the formal mechanism, in which future transforms into past by the mediation of present. This allows of MaxEnt to be investigated by the theory of quantum information. MaxEnt can be considered as an inductive analog or generalization of “Occam’s razor”. It depends crucially on choice and thus on information just as all inductive methods of reasoning. The essence shared by Occam’s razor and MaxEnt is for the relevant (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  39. Maxwell’s Demon in Quantum Mechanics.Orly Shenker & Meir Hemmo - 2020 - Entropy 22 (3):269.
    Maxwell’s Demon is a thought experiment devised by J. C. Maxwell in 1867 in order to show that the Second Law of thermodynamics is not universal, since it has a counter-example. Since the Second Law is taken by many to provide an arrow of time, the threat to its universality threatens the account of temporal directionality as well. Various attempts to “exorcise” the Demon, by proving that it is impossible for one reason or another, have been made throughout the years, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. The Physics of Implementing Logic: Landauer's Principle and the Multiple-Computations Theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41. Did the Universe Have a Chance?C. D. McCoy - 2019 - Philosophy of Science 86 (5):1262-1272.
    In a world awash in statistical patterns, should we conclude that the universe’s evolution or genesis is somehow subject to chance? I draw attention to alternatives that must be acknowledged if we are to have an adequate assessment of what chance the universe might have had.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  42. Boltzmannian Immortality.Christian Loew - 2017 - Erkenntnis 82 (4):761-776.
    Plausible assumptions from Cosmology and Statistical Mechanics entail that it is overwhelmingly likely that there will be exact duplicates of us in the distant future long after our deaths. Call such persons “Boltzmann duplicates,” after the great pioneer of Statistical Mechanics. In this paper, I argue that if survival of death is possible at all, then we almost surely will survive our deaths because there almost surely will be Boltzmann duplicates of us in the distant future that stand in appropriate (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Foundation of Statistical Mechanics: Mechanics by Itself.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12465.
    Statistical mechanics is a strange theory. Its aims are debated, its methods are contested, its main claims have never been fully proven, and their very truth is challenged, yet at the same time, it enjoys huge empirical success and gives us the feeling that we understand important phenomena. What is this weird theory, exactly? Statistical mechanics is the name of the ongoing attempt to apply mechanics, together with some auxiliary hypotheses, to explain and predict certain phenomena, above all those described (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   15 citations  
  44. Gabriel Vacariu and Mihai Vacariu (2017) From Hypernothing to Hyperverse: EDWs, Hypernothing, Wave and Particle, Elementary Particles, Thermodynamics, and Einstein’s Relativity Without “Spacetime”, Datagroup.Gabriel Vacariu and Mihai Vacariu - 2017 - Timisoara, Romania: Datagroup.
    Over the last two centuries, the relationship between philosophy and science has completely broken down, so the question we are confronted with is: How can we develop a new philosophy, which will influence science decisively? The physicists of the last century rejected their contemporary philosophy. They considered that “philosophy today is dead” (Hawking and Mlodinow 2010). However, we believe that the great scientific problems are always philosophical, and only philosophical problems. Therefore, these problems can be solved only by philosophers and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  45. Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Christopher Hitchcock & Alan H’Ajek (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   18 citations  
  46. When Does a Boltzmannian Equilibrium Exist?Charlotte Werndl & Roman Frigg - 2016 - In Daniel Bedingham, Owen Maroney & Christopher Timpson (eds.), Quantum Foundations of Statistical Mechanics. Oxford, U.K.: Oxford University Press.
    The received wisdom in statistical mechanics is that isolated systems, when left to themselves, approach equilibrium. But under what circumstances does an equilibrium state exist and an approach to equilibrium take place? In this paper we address these questions from the vantage point of the long-run fraction of time definition of Boltzmannian equilibrium that we developed in two recent papers. After a short summary of Boltzmannian statistical mechanics and our definition of equilibrium, we state an existence theorem which provides general (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47. Rethinking Boltzmannian Equilibrium.Charlotte Werndl & Roman Frigg - 2015 - Philosophy of Science 82 (5):1224-1235.
    Boltzmannian statistical mechanics partitions the phase space of a sys- tem into macro-regions, and the largest of these is identified with equilibrium. What justifies this identification? Common answers focus on Boltzmann’s combinatorial argument, the Maxwell-Boltzmann distribution, and maxi- mum entropy considerations. We argue that they fail and present a new answer. We characterise equilibrium as the macrostate in which a system spends most of its time and prove a new theorem establishing that equilib- rium thus defined corresponds to the largest (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  48. On the Possibility of Stable Regularities Without Fundamental Laws.Aldo Filomeno - 2014 - Dissertation, Autonomous University of Barcelona
    This doctoral dissertation investigates the notion of physical necessity. Specifically, it studies whether it is possible to account for non-accidental regularities without the standard assumption of a pre-existent set of governing laws. Thus, it takes side with the so called deflationist accounts of laws of nature, like the humean or the antirealist. The specific aim is to complement such accounts by providing a missing explanation of the appearance of physical necessity. In order to provide an explanation, I recur to fields (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  49. Causation and Its Basis in Fundamental Physics.Douglas Kutach - 2013 - Oxford University Press.
    I provide a comprehensive metaphysics of causation based on the idea that fundamentally things are governed by the laws of physics, and that derivatively difference-making can be assessed in terms of what fundamental laws of physics imply for hypothesized events. Highlights include a general philosophical methodology, the fundamental/derivative distinction, and my mature account of causal asymmetry.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   19 citations  
  50. Can Interventionists Be Neo-Russellians? Interventionism, the Open Systems Argument, and the Arrow of Entropy.Alexander Reutlinger - 2013 - International Studies in the Philosophy of Science 27 (3):273-293.
    International Studies in the Philosophy of Science, Volume 27, Issue 3, Page 273-293, September 2013.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 69