Explainable AI lacks regulative reasons: why AI and human decision‑making are not equally opaque

AI and Ethics (forthcoming)
  Copy   BIBTEX

Abstract

Many artificial intelligence (AI) systems currently used for decision-making are opaque, i.e., the internal factors that determine their decisions are not fully known to people due to the systems’ computational complexity. In response to this problem, several researchers have argued that human decision-making is equally opaque and since simplifying, reason-giving explanations (rather than exhaustive causal accounts) of a decision are typically viewed as sufficient in the human case, the same should hold for algorithmic decision-making. Here, I contend that this argument overlooks that human decision-making is sometimes significantly more transparent and trustworthy than algorithmic decision-making. This is because when people explain their decisions by giving reasons for them, this frequently prompts those giving the reasons to govern or regulate themselves so as to think and act in ways that confirm their reason reports. AI explanation systems lack this self-regulative feature. Overlooking it when comparing algorithmic and human decision-making can result in underestimations of the transparency of human decision-making and in the development of explainable AI that may mislead people by activating generally warranted beliefs about the regulative dimension of reason-giving.

Author's Profile

Uwe Peters
Universität Bonn

Analytics

Added to PP
2022-09-29

Downloads
87 (#58,981)

6 months
87 (#8,538)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?