Abstract
We show that linear logic can serve as an expressive framework
in which to model a rich variety of combinatorial auction
mechanisms. Due to its resource-sensitive nature, linear
logic can easily represent bids in combinatorial auctions in
which goods may be sold in multiple units, and we show
how it naturally generalises several bidding languages familiar
from the literature. Moreover, the winner determination
problem, i.e., the problem of computing an allocation of
goods to bidders producing a certain amount of revenue for
the auctioneer, can be modelled as the problem of finding a
proof for a particular linear logic sequent.