Abstract
This paper presents and motivates a new philosophical and logical approach to truth and semantic paradox. It begins from an inferentialist, and particularly bilateralist, theory of meaning---one which takes meaning to be constituted by assertibility and deniability conditions---and shows how the usual multiple-conclusion sequent calculus for classical logic can be given an inferentialist motivation, leaving classical model theory as of only derivative importance. The paper then uses this theory of meaning to present and motivate a logical system---ST---that conservatively extends classical logic with a fully transparent truth predicate. This system is shown to allow for classical reasoning over the full (truth-involving) vocabulary, but to be non-transitive. Some special cases where transitivity does hold are outlined. ST is also shown to give rise to a familiar sort of model for non-classical logics: Kripke fixed points on the Strong Kleene valuation scheme. Finally, to give a theory of paradoxical sentences, a distinction is drawn between two varieties of assertion and two varieties of denial. On one variety, paradoxical sentences cannot be either asserted or denied; on the other, they must be both asserted and denied. The target theory is compared favourably to more familiar related systems, and some objections are considered.