Abstract
A common way to understand memory structures in the cognitive sciences is as a cognitive map.
Cognitive maps are representational systems organized by dimensions shared with physical space. The
appeal to these maps begins literally: as an account of how spatial information is represented and used
to inform spatial navigation. Invocations of cognitive maps, however, are often more ambitious;
cognitive maps are meant to scale up and provide the basis for our more sophisticated memory
capacities. The extension is not meant to be metaphorical, but the way in which these richer mental
structures are supposed to remain map-like is rarely made explicit. Here we investigate this missing
link, asking: how do cognitive maps represent non-spatial information? We begin with a survey of
foundational work on spatial cognitive maps and then provide a comparative review of alternative,
non-spatial representational structures. We then turn to several cutting-edge projects that are engaged
in the task of scaling up cognitive maps so as to accommodate non-spatial information: first, on the
spatial-isometric approach , encoding content that is non-spatial but in some sense isomorphic to
spatial content; second, on the abstraction approach , encoding content that is an abstraction over
first-order spatial information; and third, on the embedding approach , embedding non-spatial
information within a spatial context, a prominent example being the Method-of-Loci. Putting these
cases alongside one another reveals the variety of options available for building cognitive maps, and the
distinctive limitations of each. We conclude by reflecting on where these results take us in terms of
understanding the place of cognitive maps in memory.