Abstract
The present work outlines a logical and philosophical conception of propositions in relation to a group of puzzles that arise by quantifying over them: the Russell-Myhill paradox, the Prior-Kaplan paradox, and Prior's Theorem. I begin by motivating an interpretation of Russell-Myhill as depending on aboutness, which constrains the notion of propositional identity. I discuss two formalizations of of the paradox, showing that it does not depend on the syntax of propositional variables. I then extend to propositions a modal predicative response to the paradoxes articulated by an abstraction principle for propositions. On this conception, propositions are “shadows” of the sentences that express them. Modal operators are used to uncover the implicit relation of dependence that characterizes propositions that are about propositions. The benefits of this approach are shown by application to other intensional puzzles. The resulting view is an alternative to the plenitudinous metaphysics of impredicative comprehension principles.