Abstract
A graph-theoretic account of logics is explored based on the general
notion of m-graph (that is, a graph where each edge can have a finite
sequence of nodes as source). Signatures, interpretation structures and
deduction systems are seen as m-graphs. After defining a category freely
generated by a m-graph, formulas and expressions in general can be seen
as morphisms. Moreover, derivations involving rule instantiation are also
morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different
logics encompassing, among others, substructural logics as well as logics
with nondeterministic semantics, and subsume all logics endowed with an
algebraic semantics.