View topic on PhilPapers for more information
Related categories

46 found
Order:
More results on PhilPapers
  1. added 2019-01-09
    A Graph-Theoretic Account of Logics.A. Sernadas, C. Sernadas, J. Rasga & Marcelo E. Coniglio - 2009 - Journal of Logic and Computation 19 (6):1281-1320.
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. added 2019-01-09
    On Graph-Theoretic Fibring of Logics.A. Sernadas, C. Sernadas, J. Rasga & M. Coniglio - 2009 - Journal of Logic and Computation 19 (6):1321-1357.
    A graph-theoretic account of fibring of logics is developed, capitalizing on the interleaving characteristics of fibring at the linguistic, semantic and proof levels. Fibring of two signatures is seen as a multi-graph (m-graph) where the nodes and the m-edges include the sorts and the constructors of the signatures at hand. Fibring of two models is a multi-graph (m-graph) where the nodes and the m-edges are the values and the operations in the models, respectively. Fibring of two deductive systems is an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. added 2018-11-29
    Defining LFIs and LFUs in Extensions of Infectious Logics.Szmuc Damian Enrique - 2016 - Journal of Applied Non-Classical Logics 26 (4):286-314.
    The aim of this paper is to explore the peculiar case of infectious logics, a group of systems obtained generalizing the semantic behavior characteristic of the -fragment of the logics of nonsense, such as the ones due to Bochvar and Halldén, among others. Here, we extend these logics with classical negations, and we furthermore show that some of these extended systems can be properly regarded as logics of formal inconsistency and logics of formal undeterminedness.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. added 2018-10-03
    Track-Down Operations on Bilattices.Damian Szmuc - 2018 - In Robert Wille & Martin Lukac (eds.), Proceedings of the 48th IEEE International Symposium on Multiple-Valued Logic. Los Alamitos, California, EE. UU.: pp. 74-79.
    This paper discusses a dualization of Fitting's notion of a "cut-down" operation on a bilattice, rendering a "track-down" operation, later used to represent the idea that a consistent opinion cannot arise from a set including an inconsistent opinion. The logic of track-down operations on bilattices is proved equivalent to the logic d_Sfde, dual to Deutsch's system S_fde. Furthermore, track-down operations are employed to provide an epistemic interpretation for paraconsistent weak Kleene logic. Finally, two logics of sequential combinations of cut-and track-down (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2018-09-18
    Negation on the Australian Plan.Franz Berto & Greg Restall - forthcoming - Journal of Philosophical Logic.
    We present and defend the Australian Plan semantics for negation. This is a comprehensive account, suitable for a variety of different logics. It is based on two ideas. The first is that negation is an exclusion-expressing device: we utter negations to express incompatibilities. The second is that, because incompatibility is modal, negation is a modal operator as well. It can, then, be modelled as a quantifier over points in frames, restricted by accessibility relations representing compatibilities and incompatibilities between such points. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. added 2018-09-04
    Truth and Generalized Quantification.Bruno Whittle - forthcoming - Australasian Journal of Philosophy:1-14.
    Kripke [1975] gives a formal theory of truth based on Kleene's strong evaluation scheme. It is probably the most important and influential that has yet been given—at least since Tarski. However, it has been argued that this theory has a problem with generalized quantifiers such as All—that is, All ϕs are ψ—or Most. Specifically, it has been argued that such quantifiers preclude the existence of just the sort of language that Kripke aims to deliver—one that contains its own truth predicate. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. added 2018-08-27
    A Calculus for Belnap's Logic in Which Each Proof Consists of Two Trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a natural dual (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. added 2018-08-26
    Interpolation in 16-Valued Trilattice Logics.Reinhard Muskens & Stefan Wintein - 2018 - Studia Logica 106 (2):345-370.
    In a recent paper we have defined an analytic tableau calculus PL_16 for a functionally complete extension of Shramko and Wansing's logic based on the trilattice SIXTEEN_3. This calculus makes it possible to define syntactic entailment relations that capture central semantic relations of the logic---such as the relations |=_t, |=_f, and |=_i that each correspond to a lattice order in SIXTEEN_3; and |=, the intersection of |=_t and |=_f,. -/- It turns out that our method of characterising these semantic relations---as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. added 2018-06-07
    Sistema Experto en Deducción dentro de la Lógica Normal Trivalente.Gabriel Garduño-Soto, David René Thierry García, Rafael Vidal Uribe & Hugo Padilla Chacón - 1990 - In VIa. Conferencia Internacional: Las Computadoras en Instituciones de Educación y de Investigación. Cómputo Académico, UNAM, UNISYS, México, octubre 3–5, 1990. Mexico City: National Autonomous University of Mexico.
    Proceeding of the work in trivalent logic developped under the direction of the professor Hugo Padilla Chacón at the 90's at the National Autonome University of México. Program in RLisp.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. added 2018-05-12
    Proof Theory of Finite-Valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. added 2018-04-13
    Conjunction and Disjunction in Infectious Logics.Hitoshi Omori & Damian Szmuc - 2017 - In Alexandru Baltag, Jeremy Seligman & Tomoyuki Yamada (eds.), Logic, Rationality, and Interaction: 6th International Workshop. Berlin: Springer. pp. 268-283.
    In this paper we discuss the extent to which conjunction and disjunction can be rightfully regarded as such, in the context of infectious logics. Infectious logics are peculiar many-valued logics whose underlying algebra has an absorbing or infectious element, which is assigned to a compound formula whenever it is assigned to one of its components. To discuss these matters, we review the philosophical motivations for infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall, noticing that none of them discusses (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. added 2018-04-07
    Maximality in Finite-Valued Lukasiewicz Logics Defined by Order Filters.Marcelo E. Coniglio, Francesc Esteva, Joan Gispert & Lluis Godo - forthcoming - Journal of Logic and Computation.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. added 2018-02-21
    New Dimensions of the Square of Opposition.Jean-Yves Beziau & Stamatios Gerogiorgakis (eds.) - 2017 - Munich: Philosophia.
    The square of opposition is a diagram related to a theory of oppositions that goes back to Aristotle. Both the diagram and the theory have been discussed throughout the history of logic. Initially, the diagram was employed to present the Aristotelian theory of quantification, but extensions and criticisms of this theory have resulted in various other diagrams. The strength of the theory is that it is at the same time fairly simple and quite rich. The theory of oppositions has recently (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. added 2018-02-01
    Logically Impossible Worlds.Koji Tanaka - 2018 - Australasian Journal of Logic 15 (2):489.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. added 2017-10-13
    Belief Dynamics: (Epistemo)Logical Investigations.Allard Tamminga - 2001 - Dissertation, University of Amsterdam
    C.S. Peirce's and Isaac Levi's accounts of the belief-doubt-belief model are discussed and evaluated. It is argued that the contemporary study of belief change has metamorphosed into a branch of philosophical logic where empirical considerations have become obsolete. A case is made for reformulations of belief change systems that do allow for empirical tests. Last, a belief change system is presented that (1) uses finite representations of information, (2) can adequately deal with inconsistencies, (3) has finite operations of change, (4) (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. added 2017-10-10
    Effective Finite-Valued Approximations of General Propositional Logics.Matthias Baaz & Richard Zach - 2008 - In Arnon Avron, Nachum Dershowitz & Alexander Rabinovich (eds.), Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. Berlin: Springer. pp. 107–129.
    Propositional logics in general, considered as a set of sentences, can be undecidable even if they have “nice” representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valued logics are computationally relatively simple—at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional logics represented in various ways can (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. added 2017-10-10
    Completeness of a Hypersequent Calculus for Some First-Order Gödel Logics with Delta.Matthias Baaz, Norbert Preining & Richard Zach - 2006 - In 36th International Symposium on Multiple-valued Logic. May 2006, Singapore. Proceedings. Los Alamitos: IEEE Press.
    All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. added 2017-10-10
    Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic.Matthias Baaz & Richard Zach - 2000 - In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. added 2017-10-10
    Approximating Propositional Calculi by Finite-Valued Logics.Matthias Baaz & Richard Zach - 1994 - In 24th International Symposium on Multiple-valued Logic, 1994. Proceedings. Los Alamitos: IEEE Press. pp. 257–263.
    The problem of approximating a propositional calculus is to find many-valued logics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valued logics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valued logics. It is shown that the optimal candidate matrices for (1) can (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. added 2017-10-10
    Elimination of Cuts in First-Order Finite-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1994 - Journal of Information Processing and Cybernetics EIK 29 (6):333-355.
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. added 2017-08-13
    Quantified Propositional Gödel Logics.Matthias Baaz, Agata Ciabattoni & Richard Zach - 2000 - In Andrei Voronkov & Michel Parigot (eds.), Logic for Programming and Automated Reasoning. 7th International Conference, LPAR 2000. Berlin: Springer. pp. 240-256.
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. added 2017-08-13
    Compact Propositional Gödel Logics.Matthias Baaz & Richard Zach - 1998 - In 28th IEEE International Symposium on Multiple-Valued Logic, 1998. Proceedings. Los Alamitos: IEEE Press. pp. 108-113.
    Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. added 2017-08-13
    Incompleteness of a First-Order Gödel Logic and Some Temporal Logics of Programs.Matthias Baaz, Alexander Leitsch & Richard Zach - 1996 - In Hans Kleine Büning (ed.), Computer Science Logic. CSL 1995. Selected Papers. Berlin: Springer. pp. 1--15.
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. added 2017-08-13
    Systematic Construction of Natural Deduction Systems for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - In Proceedings of The Twenty-Third International Symposium on Multiple-Valued Logic, 1993. Los Alamitos, CA: IEEE Press. pp. 208-213.
    A construction principle for natural deduction systems for arbitrary, finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness, and normal-form theorems for natural deduction systems.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. added 2017-08-13
    Dual Systems of Sequents and Tableaux for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Bulletin of the EATCS 51:192-197.
    The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth value and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. added 2017-05-31
    Many-Valued Logics. A Mathematical and Computational Introduction.Luis M. Augusto - 2017 - London: College Publications.
    Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and they are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. added 2017-02-10
    LP, K3, and FDE as Substructural Logics.Lionel Shapiro - 2017 - In Pavel Arazim & Tomáš Lavička (eds.), The Logica Yearbook 2016. London: College Publications.
    Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.”.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. added 2016-12-19
    Classicality Lost: K3 and LP After the Fall.Matthias Jenny - 2016 - Thought: A Journal of Philosophy 5 (4).
    It is commonly held that the ascription of truth to a sentence is intersubstitutable with that very sentence. However, the simplest subclassical logics available to proponents of this view, namely K3 and LP, are hopelessly weak for many purposes. In this paper, I argue that this is much more of a problem for proponents of LP than for proponents of K3. The strategies for recapturing classicality offered by proponents of LP are far less promising than those available to proponents of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. added 2016-02-26
    On Modal Meinongianism.Thibaut Giraud - 2016 - Synthese 193 (10).
    Modal Meinongianism is a form of Meinongianism whose main supporters are Graham Priest and Francesco Berto. The main idea of modal Meinongianism is to restrict the logical deviance of Meinongian non-existent objects to impossible worlds and thus prevent it from “contaminating” the actual world: the round square is round and not round, but not in the actual world, only in an impossible world. In the actual world, supposedly, no contradiction is true. I will show that Priest’s semantics, as originally formulated (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. added 2015-11-28
    Topos Theoretic Quantum Realism.Benjamin Eva - 2017 - British Journal for the Philosophy of Science 68 (4):1149-1181.
    ABSTRACT Topos quantum theory is standardly portrayed as a kind of ‘neo-realist’ reformulation of quantum mechanics.1 1 In this article, I study the extent to which TQT can really be characterized as a realist formulation of the theory, and examine the question of whether the kind of realism that is provided by TQT satisfies the philosophical motivations that are usually associated with the search for a realist reformulation of quantum theory. Specifically, I show that the notion of the quantum state (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. added 2015-07-20
    A Completenesss Theorem for a 3-Valued Semantics for a First-Order Language.Christopher Gauker - manuscript
    This document presents a Gentzen-style deductive calculus and proves that it is complete with respect to a 3-valued semantics for a language with quantifiers. The semantics resembles the strong Kleene semantics with respect to conjunction, disjunction and negation. The completeness proof for the sentential fragment fills in the details of a proof sketched in Arnon Avron (2003). The extension to quantifiers is original but uses standard techniques.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  32. added 2015-02-08
    Tensed Ontology Based on Simple Partial Logic.Daisuke Kachi - 2002 - Proceedings of Ninth International Symposium on Temporal Representation and Reasoning: TIME-02:141-145.
    Simple partial logic (=SPL) is, broadly speaking, an extensional logic which allows for the truth-value gap. First I give a system of propositional SPL by partializing classical logic, as well as extending it with several non-classical truth-functional operators. Second I show a way based on SPL to construct a system of tensed ontology, by representing tensed statements as two kinds of necessary statements in a linear model that consists of the present and future worlds. Finally I compare that way with (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  33. added 2015-02-06
    Bourne on Future Contingents and Three-Valued Logic.Daisuke Kachi - 2009 - Logic and Logical Philosophy 18 (1):33-43.
    Recently, Bourne constructed a system of three-valued logic that he supposed to replace Łukasiewicz’s three-valued logic in view of the problems of future contingents. In this paper, I will show first that Bourne’s system makes no improvement to Łukasiewicz’s system. However, finding some good motivations and lessons in his attempt, next I will suggest a better way of achieving his original goal in some sense. The crucial part of my way lies in reconsidering the significance of the intermediate truth-value so (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  34. added 2015-02-06
    Validity in Simple Partial Logic.Daisuke Kachi - 2002 - Annals of the Japan Association for Philosophy of Science 10 (4):139-153.
    Firstly I characterize Simple Partial Logic (SPL) as the generalization and extension of a certain two-valued logic. Based on the characterization I present two definitions of validity in SPL. Finally I show that given my characterization these two definitions are more appropriate than other definitions that have been prevalent, since both have some desirable semantic properties that the others lack.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. added 2015-02-06
    Was Łukasiewicz Wrong? : Three-Valued Logic and Determinism.Daisuke Kachi - 1996 - In "Łukasiewicz in Dublin" -- An International Conference on the Work of Jan Łukasiewicz.
    Łukasiewicz has often been criticized for his motive for inventing his three-valued logic, namely the avoidance of determinism. First of all, I want to show that almost all of the critcism along this line was wrong. Second I will indicate that he made mistakes, however, in constructing his system, because he had other motives at the same time. Finally I will propose some modification of his system and its interpretation which can attain his original purpose in some sense.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  36. added 2015-01-31
    Labeled Calculi and Finite-Valued Logics.Matthias Baaz, Christian G. Fermüller, Gernot Salzer & Richard Zach - 1998 - Studia Logica 61 (1):7-33.
    A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  37. added 2015-01-04
    Notes on the Model Theory of DeMorgan Logics.Thomas Macaulay Ferguson - 2012 - Notre Dame Journal of Formal Logic 53 (1):113-132.
    We here make preliminary investigations into the model theory of DeMorgan logics. We demonstrate that Łoś's Theorem holds with respect to these logics and make some remarks about standard model-theoretic properties in such contexts. More concretely, as a case study we examine the fate of Cantor's Theorem that the classical theory of dense linear orderings without endpoints is $\aleph_{0}$-categorical, and we show that the taking of ultraproducts commutes with respect to previously established methods of constructing nonclassical structures, namely, Priest's Collapsing (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. added 2014-10-15
    A Three-Valued Interpretation for a Relevance Logic.Fred Johnson - 1976 - The Relevance Logic Newsletter 1 (3):123-128.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  39. added 2014-01-15
    Tableaux sin refutación.Tomás Barrero & Walter Carnielli - 2005 - Matemáticas: Enseñanza Universitaria 13 (2):81-99.
    Motivated by H. Curry’s well-known objection and by a proposal of L. Henkin, this article introduces the positive tableaux, a form of tableau calculus without refutation based upon the idea of implicational triviality. The completeness of the method is proven, which establishes a new decision procedure for the (classical) positive propositional logic. We also introduce the concept of paratriviality in order to contribute to the question of paradoxes and limitations imposed by the behavior of classical implication.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  40. added 2014-01-15
    Lógica positiva : plenitude, potencialidade e problemas (do pensar sem negação).Tomás Barrero - 2004 - Dissertation, Universidade Estadual de Campinas
    This work studies some problems connected to the role of negation in logic, treating the positive fragments of propositional calculus in order to deal with two main questions: the proof of the completeness theorems in systems lacking negation, and the puzzle raised by positive paradoxes like the well-known argument of Haskel Curry. We study the constructive com- pleteness method proposed by Leon Henkin for classical fragments endowed with implication, and advance some reasons explaining what makes difficult to extend this constructive (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  41. added 2013-11-27
    Chess Composition as an Art.Miro Brada - manuscript
    The article presents the chess composition as a logical art, with concrete examples. It began with Arabic mansuba, and later evolved to new-strategy designed by Italian Alberto Mari. The redefinition of mate (e.g. mate with a free field) or a theme to quasi-pseudo theme, opens the new space for combinations, and enables to connect it with other fields like computer science. The article was exhibited in Holland Park, W8 6LU, The Ice House between 18. Oct - 3. Nov. 2013.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  42. added 2013-05-16
    Valuations.Jean-Louis Lenard - manuscript
    Is logic empirical? Is logic to be found in the world? Or is logic rather a convention, a product of conventions, part of the many rules that regulate the language game? Answers fall in either camp. We like the linguistic answer. In this paper, we want to analyze how a linguistic community would tackle the problem of developing a logic and show how the linguistic conventions adopted by the community determine the properties of the local logic. Then show how to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  43. added 2012-12-12
    Some Strong Conditionals for Sentential Logics.Jason Zarri - manuscript
    In this article I define a strong conditional for classical sentential logic, and then extend it to three non-classical sentential logics. It is stronger than the material conditional and is not subject to the standard paradoxes of material implication, nor is it subject to some of the standard paradoxes of C. I. Lewis’s strict implication. My conditional has some counterintuitive consequences of its own, but I think its pros outweigh its cons. In any case, one can always augment one’s language (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  44. added 2011-05-11
    Curry's Paradox and Omega Inconsistency.Andrew Bacon - 2013 - Studia Logica 101 (1):1-9.
    In recent years there has been a revitalised interest in non-classical solutions to the semantic paradoxes. In this paper I show that a number of logics are susceptible to a strengthened version of Curry's paradox. This can be adapted to provide a proof theoretic analysis of the omega-inconsistency in Lukasiewicz's continuum valued logic, allowing us to better evaluate which logics are suitable for a naïve truth theory. On this basis I identify two natural subsystems of Lukasiewicz logic which individually, but (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. added 2010-11-21
    Trees for a 3-Valued Logic.Fred Johnson - 1984 - Analysis 44 (1):43-6.
    Fred shows how problems with Slater's restriction of the classical propositional logic can be solved.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  46. added 2010-11-13
    Non-Classical Metatheory for Non-Classical Logics.Andrew Bacon - 2013 - Journal of Philosophical Logic 42 (2):335-355.
    A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of this paper is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations